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Abstract

Many fields of endeavor require humans to conduct manual control tasks while
viewing a perspective scene. Manual control refers to tasks in which continuous,
or nearly continuous, control adjustments are required. Examples include flying an
aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through
natural viewing of the world, simulation of a scene (as in flight simulators), or through
imaging devices (such as the cameras on an unmanned aerospace vehicle).

Designers frequently have some degree of control over the content and character-
istics of a perspective scene; airport designers can choose runway markings, vehicle
designers can influence the size and shape of windows, as well as the location of the
pilot, and simulator database designers can choose scene complexity and content. Lit-
tle theoretical framework exists to help designers determine the answers to questions
related to perspective scene content. An empirical approach is most commonly used
to determine optimum perspective scene configurations.

The goal of the research effort described in this dissertation has been to provide a
tool for modeling the characteristics of human operators conducting manual control
tasks with perspective-scene viewing. This is done for the purpose of providing an
algorithmic, as opposed to empirical, method for analyzing the effects of changing
perspective scene content for closed-loop manual control tasks.

The dissertation contains the development of a model of manual control using a

perspective scene, called the Visual Cue Control (VCC) Model. Two forms of model
were developed: one model presumed that the operator obtained both position and
velocity information from one visual cue, and the other model presumed that the
operator used one visual cue for position, and another for velocity.

The models were compared and validated in two experiments. The results show
that the two-cue VCC model accurately characterizes the output of the human oper-
ator with a variety of perspective scenes. The potential of using the model for visual
cue identification was also investigated, with promising results. A third experiment

was performed to compare perspective displays with more conventional display types.
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Nomenclature

a, amplitude of 7th component in Sum-of-Sines disturbance

c®  cosine of ©

cd cosine of @

¢V cosine of ¥

d, vector displacement of the :th feature in the image plane

D(f) DTF coefficient of time sequence 6(n) at the normalized frequency f
Dyx  scene feature longitudinal position

Dy scene feature lateral position

Dz  scene feature vertical position

E(e) expected value of e

f normalized frequency (used in Discrete Fourier Transform)

F focal length

J square root of —1

Jp fit quality index of model Y, to measurement Y,

Joi fit quality index of one-cue model Yy; to measurement %

Joo fit quality index of two-cue model Yy, to measurement Yg

k, frequency specifier of ith component in Sum-of-Sines disturbance

gain parameter in Y, model

K, sensitivity parameter of visual cue o in one-cue model Yy,

K3  sensitivity parameter of visual cue /3 in two-cue model Yp,

K,  sensitivity parameter of visual cue 7 in two-cue model Yy,

K,, calculated sensitivity parameter of visual cue A,

N number of points in the time series used for Discrete Fourier Transforms
N, number of repetitions used to determine transfer function estimates

Psy  percent of control (§) power correlated with pitch attitude disturbance (q)
Ps.  percent of control (6) power correlated with longitudinal disturbance (u)
q pitch rate disturbance

Q(f) DTF coefficient of time sequence g(n) at the normalized frequency f
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RMS;
RMS,

5€,4

Greek:

e

5]
v

remnant

longitudinal velocity root mean square

longitudinal position root mean square

the Laplace Transform variable

standard error of e

sine of ©

sine of ®

sine of ¥

time

sampling interval

data run length

longitudinal acceleration disturbance

DTF coefficient of time sequence u(n) at the normalized frequency f
linearized longitudinal position

DTF coefficient of time sequence z(n) at the normalized frequency f
operator longitudinal position

operator lateral position

controlled element dynamics

operator transfer function between control output and controlled state
experimentally measured operator transfer function between

control output and longitudinal position

one-cue operator transfer function between control output and pitch attitude
two-cue operator transfer function between control output nd pitch attitude
experimentally measured operator transfer function between

control output and pitch attitude

operator vertical position

visual cue for position and motion in one-cue model
visual cue for motion in two-cue model

visual cue for position in two-cue model
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) operator output (control)

€ estimated transfer function measurement error

(N damping of neuromuscular dynamics in Y, model

0 linearized pitch attitude

e pitch attitude

O(f) DTF coefficient of time sequence 6(n) at the normalized frequency f
Ao linearized visual cue based on nonlinear visual cue A,

A visual cue

Aan  visual cue based on the horizontal displacement between two features
Aa, visual cue based on the vertical displacement between two features
Ay visual cue based on the horizontal displacement of a feature

A, visual cue based on the displacement of a feature along a line of splay
A, visual cue based on the vertical displacement of a feature

N phase of ith component in Sum-of-Sines disturbance

Oe standard deviation of e

T time delay of human operator in Y}, model

Om phase margin

¢y,  power spectral density of y(t)

¢y.  cross spectral density of y(t) and z(t)

d roll attitude

v heading

W crossover frequency

W sampling frequency

wr, lead equalization break frequency in Y, model

wy  natural frequency of neuromuscular dynamics in Y, model
Abbreviations:

CM  Crossover Model

dB  decibels

DFT Discrete Fourier Transform

DTF Discrete Transfer Function
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OCM Optimal Control Model

rad
rms
sec

VCC

radians
root mean square
seconds

Visual Cue Control

vill



Contents

1 Introduction
1.1 Background . . . . . . .. ...
1.1.1 Ecological Psychophysics . . . . . ... ... ... ... ...,
1.1.2 Human Operator Models . . . . . .. ... .. .. ... ... .
1.1.3 Prior Art . . . . ...
1.2 Objectives and Approach . . . . . . . ... . ... .. ... ... ...
1.3 Contributions . . . . . . . .. ...

2 The Visual Cue Control Model
21 Task . . . ..
2.2 Perspective Visual Cue Selection Model . . . . . . . . . . ... ... .
2.3 Visual Cue Control Model . . . . . . ... ... ... ... .....
2.3.1 Crossover Model Predictions . . . . . . .. . . .. ... ... .
2.3.2 One-cue Model . . . . ... ... ... .. ... ... .....
2.3.3 Two-cue Model . . . . . . . ... ...
2.4 Transfer-Function Measurements . . . . . . .. ... . .. .. ...
2.4.1 SOS Input Signals . . .. .. ... ... ... ... ... ...
2.4.2 Transfer-Function Relationships . . . . . . . ... ... ... .
2.4.3 Cross Spectral Density Estimates . . . . . . . . ... ... ..
2.5 Parameters of the Visual Cue Control Model . . . . . . . .. .. ...
2.5.1 Absolute versus Relative Displacement . . . . . . . . . .. ..
2.5.2 Directional Components . . . . . . .. ... ... ... . ...

2.5.3 Illustrative Examples . . . . . . .. .. ...

1x

S T R

28



3 Experiment 1

3.1 Protocol . . . . . . ... 50
3.1.1 Participants . . . . . . . ... ... 50

3.1.2 Apparatus . . . . ... 50

3.1.3 Scene. . . . . . ... 51
3.1.4 Task . . . . . .. 55
3.1.5 Procedure . . . . . .. .. ... 95

3.1.6 Experiment Design . . . . . ... .. ... ... ..., 57

3.2 Results. . . . . . . . . Y
3.2.1 Analysis of Variance (ANOVA) . . . .. ... ... ... ... 57

3.2.2 Individual Models . . . . . . ... .. ... . 62

3.3 Discussion . . . . . . ... e 76
4 Experiment 2 79
4.1 Protocol . . . . . .. 80
4.1.1 Participants . . . . . . .. ... 80

4.1.2 Apparatus . . . . . .. 81

4.1.3 Scene. . . . . ... 82
4.1.4 Task . . . . .. 84
4.1.5 Procedure . . . . . ... ... 84

4.1.6 Experiment Design . . . . . . . . ... ... ... ... ... 86

4.2 Results. . . . . . . . 86
4.2.1 Analysis of Variance (ANOVA) . . . . ... . ... ... ... 86
4.2.2 Individual Models . . . . .. . . . . ... ... ... ... ... 89

4.3 Discussion . . . . . . . ... 105
5 Experiment 3 107
5.1 Protocol . . . . . . .. 109
5.1.1 Participants . . . . . . . . . .. ... 109

5.1.2 Apparatus . . . . . ... 109

513 Scene. . . . . ... 109
514 Task . . . . . . . . 112



5.1.5 Procedure . . . . . . . .. 112

52 Results . . . . . . .. 113
5.2.1 Analysis of Variance (ANOVA) . . . . ... ... ... ... .. 113
5.2.2 Individual Models . . . . . . . .. ... ... .. ... ... 116

53 Discussion . . . . ... 118

Discussion 123

Contributions and Conclusions 131

7.1 Summary of Contributions . . . . . . .. .. ... ... 131

7.2 Recommendations for Future Work - . . . . . . . . ... ... 135

Perspective Projection Transformation 139

Transfer Function Measurement Techniques 143

B.1 Sum-of-Sines Technique . . . . . . . .. . . ... . ... ... ... 143
B.1.1 Sampling Interval . . . . . . ... ..o 0L 144
B.1.2 RunlLength . . . .. ... ... ... .. ... ... 144
B.1.3 Frequency Components . . . . . . . . ... . ... ... .. .. 144
B.1.4 Minimizing Errors from Nonlinearities . . . . . . .. . .. .. 145

B.2 Estimation of Yp and Yg ......................... 146

Model Fitting Technique 151

C.1 Time History Fit Technique for Y, . . . . . . ... ... ... ... .. 151

C.2 Grid-Search Fit Technique for Yoy and Yo . . . . . . . . . . . . . .. 153

Experiment 1 Appendix 155

D.1 Vehicle Dynamic Simulation . . . . . . .. .. ... ... ... ... .. 155

D.2 ANOVA results summary . . . . . . ... ... ... ... . ..... 156
D21 2x2Factorial . .. .. ... ... 156
D.2.2 One-way Factorial . . . . . .. ... ... ... ... ... . 158

D.3 Individual Model Parameter Summary . . . . . . . ... ... . ... 160

D.4 Individual Model Fit Plots . . . . . . .. . ... ... . ... ... .. 163

X1



E Experiment 2 Appendix 189

E.1 Vehicle Dynamic Simulation . . . . . . ... ... ... ... ..... 189
E.2 Task Instructions . . . . . . . . . . . .. ... ... 192
E.2.1 Training Instructions . . . . . . . . ... ... ... ... 192
E.2.2 Data Run Instructions . . . . . . ... ... ... ... ... . 193

E.3 ANOVA results summary . . . . . . . . . . . ... 194
E.4 Individual Model Parameter Summary . . .. ... . ... ... ... 196
E.5 Individual Model Fit Plots . . . . . . . . ... ... ... ... .... 203
F Experiment 3 Appendix 269
F.1 Display Characteristics and Dynamics. . . . . . . . . .. ... .. .. 269
F.2 Task Instructions . . . . . . . . . . . . . .. ... 272
F.2.1 Day 1 Instructions . . . . . . . . . . ... ... ... 272
F.2.2 Day 2 Instructions . . . . . . . . . .. ... ... ... . 273

F.3 Individual Model Parameter Summary . . . .. ... .. ... .... 275
F.4 Individual Model Fit Plots . . . . . . . . . . .. ... ... ... ... 279

xii



List of Figures

1.1

21

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2

3.3

Two depictions of the human operator performing a conipensatory task. 8

Two idealized manual control systems, depicting a regulation task in

the presence of disturbances, using compensatory and perspective dis-

plays. . . . L 20
Two depictions of the human operator performing a manual control

task while viewing a perspective display. . . . . . . .. .. ... . 21
Perspective projection diagram for simplified hover task. . . . . . .. 25
Visual cue used for example analysis. . . . . ... . . ... ... .. 27
Block diagram of Crossover Model for current task. . . . .. . .. .. 29
Block diagram of one-cue model for current task. . . . ... ... .. 30
Block diagram of two-cue model for current task. . . . . . . . . . .. 32

Block diagram of one-cue model used for transfer-function identification. 35

Block diagram of two-cue model used for transfer-function identification. 35

Coordinate system used to derive directional visual cues. . . . . . . . 40
Examples of potential visual cues. . . . . . . . . .. ... ... ... 43
The four texture patterns used in Experiment 1. . . . . . . . . . .. 52

Analysis of Variance (ANOVA) results for effect of texture and pitch

disturbance in Experiment 1. . . . . .. .. ... ... ... ... .. 60

Analysis of Variance (ANOVA) results for effect of texture with pitch

disturbance present in Experiment 1. . . . . . . . . ... .., L. 61

xiii



3.4

3.5

3.6

3.7

3.8

3.9
3.10

3.11
3.12

4.1
4.2

4.3

4.4

4.5

Standard error estimates of position-to-pilot-response transfer function
Yp (Equation 2.37), as a function of input frequency, for all operators
and conditions in Experiment 1. . . . . . . . . ... ... ... 65
Standard error estimates of pitch-attitude-to-pilot-response Yy (Equa-
tion 2.38), as a function of input frequency, for all operators and con-
ditions in Experiment 1. . . . . . . . ... ... ..o 66
Example frequency response plot showing crossover frequency w. and
phase margin ¢,,. . . . . . ... Lo 68
Crossover frequency and phase margin for all operators and conditions
in Experiment 1. . . . . . . .. . ... .. ... 70
Crossover frequency versus phase margin for all operators and condi-
tions in Experiment 1. . . . . . . . .. ..o 70
Lead break frequency wy, for all operators and conditions in Experiment 1. 71
Identified parameters K,, K3, and K, for all operators and conditions
in Experiment 1. . . . . . .. .. ... Lo 73
The ratio K3/ K., from Experiment 1 for all operators and conditions. 74
The ratio of the fit quality indices Jgo/Jg1, for all operators and con-

ditions for Experiment 1. . . . . . . . . ... ... ... 75

The eight texture and dot combinations used in Experiment 2. . . . . 83
Analysis of Variance (ANOVA) results for effect of texture and dots in
Experiment 2. . . . . . . . .. 87
Analysis of Variance (ANOVA) results for effect of lines of splay in
Experiment 2. . . . . . . ... 88
Standard error estimates of position-to-pilot-response transfer function
}Afp (Equation 2.37), as a function of input frequency, for all operators
and conditions in Experiment 2. . . . . . . ... 91
Standard error estimates of pitch-attitude-to-pilot-response Y, (Equa-
tion 2.38), as a function of frequency, for all operators and conditions

in Experiment 2. . . . . . ... ... 92

Xiv



4.6 Crossover frequency and phase margin for all operators and conditions
in Experiment 2. . . .. .. ... Lo 94
4.7 Lead break frequency wy, for all operators and conditions in Experiment 2. 96
4.8 Identified parameters K,, Kg, and K, for all operators, in texture
conditions without dots in Experiment 2. . . . . . . .. ... .. ... 97
4.9 Identified parameters K,, Kz, and K, for all operators, in texture
conditions with dots in Experiment 2. . . . . . . . .. ... ... ... 98
4.10 The ratio Kg/ K, from Experiment 2 for all operators, in texture con-
ditions without dots. . . . . . . . . . . .. ... 99
4.11 The ratio K/ K, from Experiment 2 for all operators, in texture con-
ditions with dots. . . . . . . . . .. . . 100
4.12 The ratio of the fit quality indices Jgy/Jgy, for all operators and con-
ditions for Experiment 2. . . . . . . . .. ... ... 102
4.13 Magnitude of the ratio of measurement to model fit, in dB, for all
conditions, operators, and frequencies for Experiment 2. . . . . . . .. 103
4.14 Phase of the ratio of measurement to model fit. in radians, for all

conditions, operators, and frequencies for Experiment 2. . . . . . . . . 104

5.1 Compensatory display format used in Experiment 3.. . . . . . . . .. 110
5.2 Linear and nonlinear scaling of position and rate information in the
compensatory displays of Experiment 3. . . . . . ... .. ... 111
5.3 Mean velocity rms (left), and mean position rms (right), for all op-
erators, as a function of display type and disturbance condition in
Experiment 3. . . . . . .. . ... 114
5.4 Crossover frequency and phase margin as a function of pitch distur-

bance and texture, for the perspective displays, for all operators in

Experiment 3. . . . . . . . ... 117
5.5 Crossover frequency and phase margin as a function of display type for

all operators in Experiment 3. . . . . . . .. .. ... L. 119
A.1 Perspective projection transform geometry diagram. . . . . . . . . .. 140

Xv



D.1 Experiment 1 model fit results for Operator 1, Grid Texture. . . . . .
D.2 Experiment 1 model fit results for Operator 2, Grid Texture. . . . . .
D.3 Experiment 1 model fit results for Operator 3, Grid Texture. . . . . .
D.4 Experiment 1 model fit results for Operator 4, Grid Texture. . . . . .
D.5 Experiment 1 model fit results for Operator 5, Grid Texture. . . . . .
D.6 Experiment 1 model fit results for Operator 6, Grid Texture. . . . . .
D.7 Experiment 1 model fit results for Operator 1, Parallel Texture.
D.8 Experiment 1 model fit results for Operator 2, Parallel Texture.
D.9 Experiment 1 model fit results for Operator 3, Parallel Texture.
D.10 Experiment 1 model fit results for Operator 4, Parallel Texture.
D.11 Experiment 1 model fit results for Operator 5, Parallel Texture.

D.12 Experiment 1 model fit results for Operator 6. Parallel Texture.

D.13 Experiment 1 model fit results for Operator 1, Perpendicular Texture.
D.14 Experiment 1 model fit results for Operator 2, Perpendicular Texture.

D.15 Experiment 1 model fit results for Operator 3, Perpendicular Texture.

D.16 Experiment 1 model fit results for Operator 4, Perpendicular Texture.

D.17 Experiment 1 model fit results for Operator 5, Perpendicular Texture.

D.18 Experiment 1 model fit results for Operator 6, Perpendicular Texture.
D.19 Experiment 1 model fit results for Operator 1, Line Texture. . . . . .
D.20 Experiment 1 model fit results for Operator 2, Line Texture. . . . . .
D.21 Experiment 1 model fit results for Operator 3, Line Texture. . . . . .
D.22 Experiment 1 model fit results for Operator 4, Line Texture. . . . . .
D.23 Experiment 1 model fit results for Operator 5, Line Texture. . . . . .
D.24 Experiment 1 model fit results for Operator 6, Line Texture. . . . . .

E.1 Experiment 2 model fit results for Operator 1, Grid Texture w/o dots.
E.2 Experiment 2 model fit results for Operator 2, Grid Texture w/o dots.
E.3 Experiment 2 model fit results for Operator 3, Grid Texture w/o dots.
E.4 Experiment 2 model fit results for Operator 4, Grid Texture w/o dots.
E.5 Experiment 2 model fit results for Operator 5, Grid Texture w/o dots.
E.6 Experiment 2 model fit results for Operator 6, Grid Texture w/o dots.

XVi

204
205
206
207
208
209



E.7 Experiment 2 model fit results for Operator 7, Grid Texture w/o dots.

E.8 Experiment 2 model fit results for Operator 8, Grid Texture w/o dots.

E.9 Experiment 2 model fit results for Operator 1, Parallel Texture w/o
dots. . . . L
E.10 Experiment 2 model fit results for Operator 2, Parallel Texture w/o
dots. . ...
E.11 Experiment 2 model fit results for Operator 3, Parallel Texture w/o
dots. . . .
E.12 Experiment 2 model fit results for Operator 4, Parallel Texture w/o
dots. . ..
E.13 Experiment 2 model fit results for Operator 5, Parallel Texture w/o
dots. . . . .o
E.14 Experiment 2 model fit results for Operator 6, Parallel Texture w/o
dots. ..o
E.15 Experiment 2 model fit results for Operator 7, Parallel Texture w/o
dots. . . .
E.16 Experiment 2 model fit results for Operator 8, Parallel Texture w/o
dots. . . .o
E.17 Experiment 2 model fit results for Operator 1, Perpendicular Texture
w/odots. . ... L
E.18 Experiment 2 model fit results for Operator 2, Perpendicular Texture
w/odots. . ...
E.19 Experiment 2 model fit results for Operator 3, Perpendicular Texture
w/odots. . ...
E.20 Experiment 2 model fit results for Operator 4, Perpendicular Texture
w/odots. . ...
E.21 Experiment 2 model fit results for Operator 5, Perpendicular Texture
w/odots. . ...
E.22 Experiment 2 model fit results for Operator 6, Perpendicular Texture

w/odots. ..o

210
211

212

213

214

216

217

218

219

220

221

222

223

224



E.23 Experiment 2 model fit results for Operator 7, Perpendicular Texture

w/odots. . ...
E.24 Experiment 2 model fit results for Operator 8, Perpendicular Texture

w/odots. . ...
E.25 Experiment 2 model fit results for Operator 1, Line Texture w/o dots.
E.26 Experiment 2 model fit results for Operator 2, Line Texture w/o dots.
E.27 Experiment 2 model fit results for Operator 3, Line Texture w/o dots.
E.28 Experiment 2 model fit results for Operator 4, Line Texture w/o dots.
E.29 Experiment 2 model fit results for Operator 5, Line Texture w/o dots.
E.30 Experiment 2 model fit results for Operator 6, Line Texture w/o dots.

E.31 Experiment 2 model fit results for Operator 7, Line Texture w/o dots.
E.32 Experiment 2 model fit results for Operator 8, Line Texture w/o dots.

E.33 Experiment 2 model fit results for Operator 1, Grid Texture w/dots.
E.34 Experiment 2 model fit results for Operator 2, Grid Texture w/dots.
E.35 Experiment 2 model fit results for Operator 3, Grid Texture w/dots.
E.36 Experiment 2 model fit results for Operator 4, Grid Texture w/dots.
E.37 Experiment 2 model fit results for Operator 5, Grid Texture w/dots.
E.38 Experiment 2 model fit results for Operator 6, Grid Texture w/dots.
E.39 Experiment 2 model fit results for Operator 7, Grid Texture w/dots.
E.40 Experiment 2 model fit results for Operator 8, Grid Texture w/dots.

E.41 Experiment 2 model fit results for Operator 1, Parallel Texture w/dots.
E.42 Experiment 2 model fit results for Operator 2, Parallel Texture w/dots.
E.43 Experiment 2 model fit results for Operator 3, Parallel Texture w/dots.
E.44 Experiment 2 model fit results for Operator 4, Parallel Texture w/dots.
E.45 Experiment 2 model fit results for Operator 5, Parallel Texture w/dots.
E.46 Experiment 2 model fit results for Operator 6, Parallel Texture w/dots.
E.47 Experiment 2 model fit results for Operator 7, Parallel Texture w/dots.
E.48 Experiment 2 model fit results for Operator 8, Parallel Texture w/dots.

E.49 Experiment 2 model fit results for Operator 1, Perpendicular Texture

W/dOtS. . . ..



E.50 Experiment 2 model fit results for Operator 2, Perpendicular Texture
w/dots. ..o
E.51 Experiment 2 model fit results for Operator 3, Perpendicular Texture
w/dots. ..o
E.52 Experiment 2 model fit results for Operator 4, Perpendicular Texture
w/dots. ..o
E.53 Experiment 2 model fit results for Operator 5, Perpendicular Texture
w/dots. . ..o
E.54 Experiment 2 model fit results for Operator 6, Perpendicular Texture
w/dots. ...
E.55 Experiment 2 model fit results for Operator 7, Perpendicular Texture
w/dots. . ... L
E.56 Experiment 2 model fit results for Operator 8, Perpendicular Texture
w/dots. . ...
E.57 Experiment 2 model fit results for Operator 1, Line Texture w/dots.
E.58 Experiment 2 model fit results for Operator 2, Line Texture w/dots.
E.59 Experiment 2 model fit results for Operator 3, Line Texture w/dots.
E.60 Experiment 2 model fit results for Operator 4. Line Texture w/dots.
E.61 Experiment 2 model fit results for Operator 5, Line Texture w/dots.
E.62 Experiment 2 model fit results for Operator 6, Line Texture w/dots.
E.63 Experiment 2 model fit results for Operator 7, Line Texture w/dots.
E.64 Experiment 2 model fit results for Operator 8, Line Texture w/dots.

F.1 Experiment 3 model fit results for Operator 1, Perspective Grid Dis-
play, with pitch disturbance. . . . . . . ... .00
F.2 Experiment 3 model fit results for Operator 2, Perspective Grid Dis-
play, with pitch disturbance. . . . . . . . ... ... 0L
F.3 Experiment 3 model fit results for Operator 3, Perspective Grid Dis-
play, with pitch disturbance. . . . . . . . .. o000
F.4 Experiment 3 model fit results for Operator 4, Perspective Grid Dis-
play, with pitch disturbance. . . . . . . . ..o 00

X1X

259
260
261
262
263
264
265
266
267



F.5 Experiment 3 model] fit results for Operator 5, Perspective Grid Dis-
play, with pitch disturbance. . . . . . . .. ... o0
F.6 Experiment 3 model fit results for Operator 6, Perspective Grid Dis-
play, with pitch disturbance. . . . . .. ... ...
F.7 Experiment 3 model fit results for Operator 1, Perspective Line Display,
with pitch disturbance. . . . . . . . ... ...
F.8 Experiment 3 model fit results for Operator 2, Perspective Line Display,
with pitch disturbance. . . . . . . . ... ..o
F.9 Experiment 3 model fit results for Operator 3, Perspective Line Display,
with pitch disturbance. . . . . . . .. ..o

F.10 Experiment 3 model fit results for Operator 4, Perspective Line Display,
with pitch disturbance. . . . . . . . ... ..

F.11 Experiment 3 model fit results for Operator 5, Perspective Line Display,
with pitch disturbance. . . . . . . . ..o
F.12 Experiment 3 model fit results for Operator 6, Perspective Line Display,
with pitch disturbance. . . . . . .. ..o
F.13 Experiment 3 model fit results for Operator 1, Perspective Grid Dis-
play, with no pitch disturbance. . . . . . . . .. . .. .. L
F.14 Experiment 3 model fit results for Operator 2, Perspective Grid Dis-
play, with no pitch disturbance. . . . . . . .. ... ... ... ...
F.15 Experiment 3 model fit results for Operator 3, Perspective Grid Dis-
play, with no pitch disturbance. . . . . .. ... ... ... ... ..
F.16 Experiment 3 model fit results for Operator 4, Perspective Grid Dis-
play, with no pitch disturbance. . . . . . . . ... ... ... .. ..
F.17 Experiment 3 model fit results for Operator 5, Perspective Grid Dis-
play, with no pitch disturbance. . . . . .. . ... ... ... ...
F.18 Experiment 3 model fit results for Operator 6, Perspective Grid Dis-
play, with no pitch disturbance. . . . . . . . ... ... ... ...
F.19 Experiment 3 model fit results for Operator 1, Perspective Line Display,

with no pitch disturbance. . . . . . .. ...

XX



F.20 Experiment 3 model fit results for Operator 2, Perspective Line Display,
with no pitch disturbance. . . . ... ... 000
F.21 Experiment 3 model fit results for Operator 3, Perspective Line Display,
with no pitch disturbance. . . . . ... ..o
F.22 Experiment 3 model fit results for Operator 4, Perspective Line Display,
with no pitch disturbance. . . . . ... ..o
F.23 Experiment 3 model fit results for Operator 5, Perspective Line Display,
with no pitch disturbance. . . . . . . ... ... L0
F.24 Experiment 3 model fit results for Operator 6, Perspective Line Display,
with no pitch disturbance. . . . . . ... 000000
F.25 Experiment 3 model fit results for Operator 1, Linear Compensatory
Display, with no pitch disturbance. . . . . . . . ... ... ... ...
F.26 Experiment 3 model fit results for Operator 2, Linear Compensatory
Display, with no pitch disturbance. . . . . . .. .. .. ... ... ..
F.27 Experiment 3 model fit results for Operator 3, Linear Compensatory
Display, with no pitch disturbance. . . . . . . . . ... ... ... ..
F.28 Experiment 3 model fit results for Operator 4, Linear Compensatory
Display, with no pitch disturbance. . . . . . . . . .. .. .. ... ..

F.29 Experiment 3 model fit results for Operator 5, Linear Compensatory

Display, with no pitch disturbance. . . . . . . . . . . .00 0oL

F.30 Experiment 3 model fit results for Operator 6, Linear Compensatory
Display, with no pitch disturbance. . . . . . ... . . ... ... ...

F.31 Experiment 3 model fit results for Operator 1, Linear Compensatory
w/Rate Bar Display, with no pitch disturbance. . . . . . ... .. ..

F.32 Experiment 3 model fit results for Operator 2, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance. . . . . . ... . ...

F.33 Experiment 3 model fit results for Operator 3, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance. . . . . . ... .. ..

F.34 Experiment 3 model fit results for Operator 4, Linear Compensatory

w/Rate Bar Display, with no pitch disturbance. . . . . . . .. .. ..

Xx1

303

304

305

306

307

308

309

310

311



F.35 Experiment 3 model fit results for Operator 5, Linear Compensatory
w/Rate Bar Display, with no pitch disturbance. . . . . . . .. .. ..
F.36 Experiment 3 model fit results for Operator 6, Linear Compensatory
w/Rate Bar Display, with no pitch disturbance. . . . . .. . .. . ..
F.37 Experiment 3 model fit results for Operator 1, Nonlinear Compen-
satory Display, with no pitch disturbance. . . . . ... ... ... ..
F.38 Experiment 3 model fit results for Operator 2, Nonlinear Compen-
satory Display, with no pitch disturbance. . . . . . .. ... ... . .
F.39 Experiment 3 model fit results for Operator 3, Nonlinear Compen-
satory Display, with no pitch disturbance. . . . . . . . ... ... ..
F.40 Experiment 3 model fit results for Operator 4, Nonlinear Compen-

satory Display, with no pitch disturbance. . . . . . . . . . . . . . ..

F.41 Experiment 3 model fit results for Operator 5, Nonlinear Compen-
satory Display, with no pitch disturbance. . . . . . . . .. . ... ..
F.42 Experiment 3 model fit results for Operator 6, Nonlinear Compen-
satory Display, with no pitch disturbance. . . . . . . .. .. ... ..
F.43 Experiment 3 model fit results for Operator 1, Nonlinear Compen-
satory w/Rate Bar Display, with no pitch disturbance. . . . . . . ..
F.44 Experiment 3 model fit results for Operator 2, Nonlinear Compen-
satory w/Rate Bar Display, with no pitch disturbance. . . . . . . . .
F.45 Experiment 3 model fit results for Operator 3, Nonlinear Compen-
satory w/Rate Bar Display, with no pitch disturbance. . . . . . . ..
F.46 Experiment 3 model fit results for Operator 4, Nonlinear Compen-
satory w/Rate Bar Display, with no pitch disturbance. . . . . . . ..
F.47 Experiment 3 model fit results for Operator 5, Nonlinear Compen-
satory w/Rate Bar Display, with no pitch disturbance. . . . . . . ..
F.48 Experiment 3 model fit results for Operator 6, Nonlinear Compen-

satory w/Rate Bar Display, with no pitch disturbance. . . . . . . ..

xxii



List of Tables

2.1

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3

5.1

D.1
D.2
D.3
D.4

D.5

Expressions for K for proposed visual cues . . . . . .. ... .. .. 47
Values of K, for proposed visual cues in Experiment 1. . . . . . . .. 54
Experiment 1 presentation order by operator. . . . . . ... ... .. 56
Summary of statistical significance terminology . . . . . . . ... .. 58

Statistical significance for the 2x2 Analysis of Variance (textures x

pitch disturbance) from Experiment 1. . . . . . .. ... ... ... 59
Statistical significance for the one-way Analysis of Variance (effect of

texture) from Experiment 1. . . . . . . ... ..o 62
Values of K for proposed visual cues in Experiment 2. . . . . . . .. 84
Experiment 2 presentation order by operator. . . . . . ... ... .. 85

Statistical significance for the 4x2 Analysis of Variance (texture x

dots) from Experiment 2. . . . . . .. . ... .. 89
Experiment 3 presentation order by operator. . . . .. ... ... .. 115
Experiment 1 disturbance spectra magnitudes and frequencies. . . . . 156

Experiment 1 phase angles p, used to define disturbance u per repetition.157

Experiment 1 phase angles p, used to define disturbance ¢ per repetition.157

Means and Standard Errors for Pjg, FPs,, RMS, and RMS,; for the 2 x 2
(disturbance x texture) ANOVA in Experiment 1. . . . . . . . . . .. 158

F-test and probabilities for statistical analysis of the 2 x 2 (disturbance
x texture) ANOVA in Experiment 1. . . . . . ... .. ... ... .. 158

XX1i1



D.6 Means and Standard Errors for Pjsg, Ps,, RMS; and RMS, for the

one-way (texture) ANOVA in Experiment 1.. . .. ... .. ... .. 159
D.7 F-test and probabilities for statistical analysis of the one-way (texture)

ANOVA in Experiment 1. . . . . . . . . .. .. ... ... ...... 159
D.8 Y, parameters K, wr, and 7, and model fit index J, from Experiment 1.160
D.9 Crossover frequency and phase margin of Y, Y, from Experiment 1. . 161
D.10 Yy, parameter K,, and model fit index Jy; from Experiment 1. . . . . 161
D.11Y,, parameters Kz and K., model fit index Jyo, and model fit ratio

Joa/Jgy from Experiment 1. . . . . .. ... ... L. 162
E.1 Experiment 2 disturbance spectra magnitudes and frequencies. . . . . 190

E.2 Experiment 2 phase angles p, used to define disturbance u per repetition.191
E.3 Experiment 2 phase angles p, used to define disturbance ¢ per repetition.191

E.4 Means and Standard Errors for Psy, Ps,., RMS,, and RMS, from the

4 x 2 (texture x dots)ANOVA in Experiment 2. . . . . . .. ... .. 194
E.5 F-test and probabilities for statistical analysis of the 4 x 2 (texture x

dots) ANOVA in Experiment 2. . . . . . .. .. .. ... ... ..., 195
E.6 F-test and probabilities for statistical analysis of one-way (splay effects)

ANOVA in Experiment 2. . . . . . . . ... ... ... .. 195
E.7 Y, parameters K, and wy, and model fit index J, from Experiment 2. 197
E.8 Y, parameters 7, wy, and (y from Experiment 2. . . . ... ... .. 198
E.9 Crossover frequency and phase margin of Y, Y. from Experiment 2. . . 199
E.10 Yp, parameter K,, and model fit index Jp; from Experiment 2. . . . . 200

E.11 Yy, parameters K3 and K, and model fit index Jpo from Experiment 2.201
E.12 Model fit index ratio Jgo/Jp1, and gain ratio K3/ K., to compare the

one-cue and two-cue model fits from Experiment 2. . . . . . . . . .. 202

F.1 Y, parameters K, and wy, and model fit index J, from Experiment 3. 276
F.2 Y, parameters 7, wy, and (y from Experiment 3. . . . ... ... .. 277

F.3 Crossover frequency and phase margin of Y,Y, from Experiment 3. . 278

XXiv



Chapter 1
Introduction

Little is known about how humans extract information from a perspective scene, par-
ticularly to perform closed-loop manual control tasks. Examples of perspective scenes
include computer generated imagery (commonly used in simulators), camera images,
and natural viewing of a scene (such as out of the window of an aircraft). Manual
control refers to activities in which the human makes nearly continuous adjustments
to a controlled element (e.g. aircraft) through a control inceptor (e.g. joystick), in
order to produce some desired outcome (e.g. tracking or regulation).

Better understanding of how humans use information in a perspective scene can

be important for several reasons. The content of a perspective scene is often a design

choice. Airport and heliport markings constitute manipulation of perspective-scene
content for real-world applications. Designers of simulators and associated databases
for out-the-window scene generation make choices concerning scene content, complex-
ity and update rate. And designers of unmanned aerospace vehicle (UAV) control
systems have choices to make concerning the field of view, resolution, dynamic range,
and update rates of imaging technologies. Currently, decisions related to perspective-
scene content are frequently made with an empirical approach, in which multiple
potential configurations are tested. Very little theoretical framework exists to enable
designers to make informed a priori decisions in these types of applications.

The purpose of the research described herein was to advance the fundamental

knowledge of this subject, and from there to develop a basic new tool to aid in the



design of the most cogent perspective-scene content. Specifically, this dissertation
describes an experimental program in which a new methodology for modeling and
identification of visual-cue usage in a manual control task was developed. Chapter 1
contains introductory information, including a review of relevant related work. Chap-
ter 2 contains the derivation of two forms of a visual-cue-usage model. Chapters 3
and 4 describe two experiments that were conducted to identify and validate the
most appropriate model. Chapter 5 describes an experiment in which the perspective
display was compared with more conventional displays. Chapter 6 contains discus-
sion of the results of the experiments, and some of the implications of these results.
Chapter 7 contains conclusions from this research, a summary of the fundamental

contributions it has made, and recommendations for future work.

1.1 Background

The work described in this dissertation, as well as the prior art, has relied heavily on
two different disciplines. The first discipline is Psychophysics, which is the study of
the mapping between physical stimuli and the psychological response to those stimuli.
The second discipline is Manual Control, which is the study of human behavior when
controlling a system that requires constant control inputs. Psychophysics is relevant
because it has generated much understanding as well as mathematical models of per-
spective scene perception. Manual control is relevant because it provides a framework
for analyzing the behavior of the human operator in performing a manual control task,
given the information gleaned through visual perception of the perspective scene.

In the following sections, both Psychophysics and Manual Control will be dis-
cussed, and particularly relevant portions of each topic will be reviewed in detail.
Then previous work that is considered relevant prior art will be discussed sepa-
rately. The work that falls into this category has two distinct qualities; modeling
of perspective-scene perception, and modeling of manual control based on the scene
perception.

This chapter does not feature an extensive or inclusive review of displays, manual



control, or visual perception; for the most part, only the most directly relevant infor-
mation from these topics is presented. Several sources are recommended if the reader
wishes to obtain more extensive information. [1] contains an overview of research on
the effects of control dynamics and display types on performance. [2] is a survey of
research related to modeling of control behavior with various types of displays. [3]
contains a summary of manual control models beyond the two models reviewed in
this dissertation; [4] summarizes human supervisory control models. [5] contains an
introductory overview of visual perception, while [6] is probably the best source of

information on ecological psychophysics related to self-motion perception and control.

1.1.1 Ecological Psychophysics

Psychophysics as a discipline dates back more than 100 years. Just as engineering
has evolved into several areas of specialization, psychophysics also has particular
disciplines within it. Specifically, the work described in this thesis relies on the field
of Visual Psychophysics, which is simply the study of the effect of light (the physical
stimuli) on visual perception (the psvchological response).

Several approaches to understanding and modeling visual perception have been
advanced within the field of visual psychophysics. One such approach, often termed

the “Information Processing” approach, encompasses empirical studies on the sen-

sitivity of animals and humans to constrained stimuli, models to describe observed
responses, and neurological studies to determine what functions the brain performs
in visual perception. This approach has great relevance to a range of problems (such
as image processing), but does little to describe how humans and animals draw upon
this visual perception to perceive more about the complex world around them.

At the beginning of World War II, there was an intense interest in reducing the
rate at which aviator candidates were washed out of the program. James J. Gibson,
a perceptual psychologist drafted to serve in the war, was tasked with developing
perceptual tests to administer to aviator candidates. The focus of Gibson’s research
effort quickly turned to depth and distance perception, which many believed to be

critical to the landing task. However, none of the tests devised to measure these



perceptual capabilities proved to be successful in predicting a prospective pilot’s ca-
pabilities. Work that Gibson performed in this area (7}, coupled with research he
had performed before and after the war, eventually lead to the development of a new
theory of psychophysics which would become known as Ecological Psychophysics.
Gibson advanced a set of hypotheses [8], which he called the “ ‘Ground Theory’ of
Space Perception”. He described it as “the possibility that there is literally no such
thing as a perception of space without the perception of a continuous background

surface”. The five initial hypotheses of this theory are presented below:

1. The elementary impressions of a visual world are those of surface and edge.

2. There is always some variable in stimulation (however difficult it may be to

discover and isolate) which corresponds to a property of the spatial world.

3. The stimulus-variable within the retinal image to which a property of visual

space corresponds need be only a correlate of that property, not a copy of it.

4. The inhomogeneities of the retinal image can be analyzed by the methods of
number theory and modern geometry into a set of variables analogous to the

variables of physical energy.

5. The problem of how we perceive the visual world can be divided into two prob-
lems to be considered separately: first, the perception of the substantial or
spatial world, and, second, the perception of the world of useful and significant

things to which we ordinarily attend.

This approach for understanding visual perception was quite different from the
information processing approach taken by his predecessors. Most of the previous
work had been done without taking the context of the perception into account; Gib-
son’s approach made consideration of context an essential element in understanding
perception. One central concept of this theory, best exemplified in hypotheses 2 and
3 above, is that we can find characteristics in the stimulation that correlate with
some desired property of the spatial world. This concept was carried further by one
of Gibson’s students, Rik Warren. Warren developed a detailed mathematical de-

scription of the optical transformations occurring in rectilinear motion [9, 10]. Other
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researchers (including Gibson) had developed expressions for optical invariants for
various particular cases (such as constant-altitude flight); Warren’s contribution was
to formalize a more general description of the optical transformations for the purpose
of determining potential optical invariants.

Much of the work done in ecological psychophysics has addressed human locomo-
tion, both natural (e.g., walking, running) and vehicle-based. An excellent review of
the relevant work related to human locomotion up to 1990 can be found in [6]. How-
ever, some researchers have focussed primarily on the optical information available
for the more complex task! of flying an aircraft. One task that has received a great
deal of attention is the approach to landing, particularly the problems of glidepath
control and touchdown-point estimation. Gibson addressed this task in both his work
for the Army and later work {11, 12]. Calvert was another researcher, working for
the Royal Aircraft Establishment, who studied the approach-to-landing task [13, 14].
Both Gibson and Calvert approached this task from the standpoint of visual-cue iden-
tification (i.e. identifying patterns in the visual scene that would allow estimation of
relevant parameters such as touchdown aimpoint).

Havron combined the optical information available in the landing scene with mea-
surements of visual perceptual thresholds. In the summary of [15], he succinctly

describes his approach:

Formulae are presented which describe the apparent speeds of movement

of ground objects during final approach. Next, human factors data are
brought together to estimate perceptual thresholds for movement. Speeds
of movement expressed as iso-velocity curves are then compared with per-
ceptual thresholds of motion to evaluate the effectiveness of guidance that
the apparent expansion pattern of earth can provide for touchdown point,

heading and flare-out.

Naish [16] used a very similar approach to examine the geometrical properties of
the runway outline projected onto the forward view. He developed predictions of the

saliency of a number of visual cues based upon human perceptual thresholds. The

'Presumably more complex than walking or running

(653



tasks he considered were related to lateral and vertical path positioning. Others have
used more complex human perceptual models to examine the approach-to-landing
task. Perrone applied models of slant misperception {17, 18] to the “black-hole”
landing [19, 20]. This situation can occur at night when only the runway outline is
illuminated. Galanis [21] developed a perceptual model for glideslope estimation in
an impoverished scene, using a weighted average of the geometrical relations within

the scene.

Another aviation-related task that has received much attention within the psy-
chophysics community is altitude control. The literature in this area is quite exten-

sive, and a thorough review is beyond the scope of this dissertation. Much of the

relevant work in this area has been summarized in [6]. Owen [22], Johnson [23, 24],
and Flach [25] have done empirical work based upon the functional optical invariant
analysis techniques developed by Warren. While much of the prior work related to
judgment of altitude has relied upon passive judgments, Johnson and Flach have fo-
cused more on the active-control paradigm. The basic experimental approach used
by these researchers has been to 1) develop a candidate set of optical invariants to be
evaluated, 2) design test stimuli with combinations of these optical invariants present,
and 3) correlate the observed performance with the invariants. This approach has
typically not included any modeling of the human operator’s control behavior, with
one exception. Johnson and Phatak used the results of one of these experiments [24]
to demonstrate the efficacy of a combined manual control/perception model [26]; this

is discussed further in Section 1.1.3.

Other researchers have expanded these methodologies further, applying optimal
estimation theory to describe perspective scene viewing. This approach has been
used to incorporate the effects of both perceptual thresholds and attention sharing.
Since the researchers who have developed this approach have also considered closed-
loop manual control, this work will be further discussed with the other prior art in

section 1.1.3.



1.1.2 Human Operator Models

Human operator modeling started with Tustin in the late 1940’s. In developing sys-
tems to aid gunners performing target tracking, Tustin discovered that the control
behavior of the human could in many cases be modeled with simple linear servomecha-
nisms [27]. Several models have since been developed to describe the strategy a human
operator adopts in a closed-loop manual control task (a summary of human operator
modeling for manual control tasks can be found in [3]). Two of these models will be

briefly described.

Crossover Model

McRuer and several colleagues developed what they called the Crossover Model (CM)
over a period of approximately 20 years: [28] contains a comprehensive summary.
McRuer conducted extensive experiments with human operators controlling plants
with varying dynamics, forcing functions, and differing levels of system complexity.
The goal of this work was to understand and model the compensation that humans
adopt in manual control tasks.

Conceptually, McRuer represented the human operator in a manual control svstem
with components that were related to known processes and svstems (Figure 1.1(a)).

This conceptual model accounts for sensory processes (perception), equalization (con-

trol strategy), and the dynamics of the limb manipulating the controller. While useful
for visualizing the human as a control element, this idealization is not particularly
useful for measurement and model identification. The processes shown are known
to be, in some situations, highly nonlinear, and the inner-loop states are, at best,
difficult to measure.

The approach adopted by McRuer was to represent the output of the human
operator with two components: 1) the component of the response that is linearly
correlated with the forcing function, and 2) the remainder, termed the remnant.
Figure 1.1(b) shows an equivalent block diagram of Figure 1.1(a), in which the output
of the human operator is represented with these two components. The dynamics of the

display (if any) are included with the controlled element dynamics as a single. linear,
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Figure 1.1: Two depictions of the human operator performing a compensatory task.
The figure on the left (a) depicts an idealized block diagram of the system. The
figure on the right (b) depicts an equivalent block diagram of the system, useful for
measurement and identification.



constant coefficient element Y,. The dynamic element Y}, is used to represent the linear
compensation the human operator adopts. Factors that have been demonstrated to
appreciably affect Y, are the controlled element Y, the forcing function characteristics,
and the frequency of the input.

McRuer found that the characteristics of Y, tended to vary systematically as a

function of these factors. He advanced a model for Y}, that consists of two elements:
1. A general parameterized linear model form (a function of frequency, jw), and

2. A series of adjustment rules to set the model parameters for the particular

situation

These adjustment rules account for the controlled element Y, and the forcing func-
tion?.

The first (and simplest) linear model form that was advanced from this effort
specified that the human operator tended to adjust his or her compensation (Y}),
such that, in the input-frequency region of crossover (loop gain = 1), the combined

open-loop transfer functions of the operator and controlled element (Y,.) had the form:

—TS

Y, (s)Yi(s) = “"‘: (1.1)

Equation 1.1 is the essence of the Crossover Model.

The crossover frequency w. is defined as the frequency at which the magnitude
of the combined human operator and controlled element dynamics are equal to one;

that is:
Y, (jwe)Ye(jwe)| = 1 (1.2)

The parameter 7 in Equation 1.1 represents the human time delay, which is the
lumped contribution of perceptual delays, neuromotor delays, and any other higher
frequency lags. The adjustment rules for the selection of parameters will not be

discussed here, but are available in [28].

%Y, can also be time-varying, due to factors such as training (i.e. the process of skill acquisition
constantly changes Y,) and fatigue. These effects of these factors can (fortunately) typically be
controlled through operator selection and training. The manipulator dynamics have been shown in
most cases to cause second-order effects, and are typically not accounted for.

9



Further experimentation by McRuer and others yielded a more complex model

form, called the Precision Model:

T 1
YP(S) _ er_Ts( LS+ 1) (TKS +1

/ (1.3)
Tis+1 TKS+1>(TN,S+1)<(j)2+%%—S+1>

The terms T, and 77 represent the basic lead and lag equalization capabilities the hu-
man provides. The terms Tk and T} represent a low-frequency lag-lead equalization
that is sometimes observed called the low-frequency “phase droop”. This typically
appears when the forcing-function bandwidth increases. The terms Ty, wy, and (y
represent the neuromuscular dynamics. K, represents the gain the operator adopts,
and 7 is a lumped time delay representing pure time delays in both the perceptual
and neuromuscular systems. The Precision Model was developed specifically to al-
low precise fitting of data in frequency ranges well above and below the crossover
frequency.

Although Equation 1.1 was termed the Crossover Model when it was first pub-
lished, the term Crossover Model has become synonymous with the spectrum of mod-
els developed by McRuer and his colleagues. A modified Crossover Model as well as

a form of the Precision Model are used in the analysis described in this dissertation.

Optimal Control Model

Another model that has been developed to model human compensation in closed-loop
control is the Optimal Control Model (OCM). It had been noted by most researchers
in human operator modeling that the compensation the human adopts is similar to
the compensation that an experienced designer would put into an inanimate compen-
sator element. Kleinman, Baron and Levison {29] used optimal-control techniques to
develop a model of human compensation in manual control situations. One element
of the model that sets it apart from the Crossover Model is the assumption that
the human acts as an optimal estimator, reconstructing the system state from the
observations.

Both types of model can achieve the same results: The dynamics represented in

the precision model can usually be duplicated with the OCM with proper selection
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of weighting matrices, noise covariances, and time delays. The choice of model to
use often depends upon the desired result. The Crossover Model is better suited
for parameter identification, but requires specifying the model structure explicitly.
The OCM is more easily adapted to represent complex systems, and is particularly
well suited to studying the effects of adjusting system characteristics. Both of these
modeling approaches have been used to study manual control with perspective scene

viewing; this work will be reviewed in the next section.

1.1.3 Prior Art

This subsection will discuss prior work that has the most direct relevance to the
work described in the dissertation. The defining features of the work included in this
section are 1) modeling of perception® of a perspective scene, and 2) modeling of
closed-loop manual control using the perspective scene perception (as opposed to the
explicit display of measured states). A common element of all of the work described
in this section is to directly account for perspective scene viewing by modeling the
perspective projection of the world into an image (or natural viewing).

The approach necessary to incorporate perceptual scene viewing with manual
control was well understood by the developers of the manual control models. In 1974,
McRuer demonstrated an understanding of this approach for modeling of manual

control using visual scenes [30]:

“The inputs sensed for VFR conditions are currently estimated on the
basis of control needs (i.e., what feedback paths are necessary or desirable
for the closed-loop system). The actual quantities perceived are likely to
be linear combinations of these, with the weightings between the inputs
fixed by the geometry and perspective rather than being independently
adjustable by the pilot. These aspects of perception can have profound
effects on the closed-loop analysis of various maneuvers (e.g., approach,

landing, dive bombing, etc.).”

31n this context, perception is defined as the process by which a human operator obtains infor-
mation, for the purpose of performing closed-loop manual control.

11



Baron [31] also suggested an approach to account for viewing of a perspective
scene in closed-loop-control modeling with the human. The approach was to use the
perspective transformations to identify the linearized components of each visual cue
to construct the measurement matrix. Visual perception thresholds, where appropri-
ate, were suggested to provide the observation noise covariance parameters. These
measurements were then combined with human OCMs.

The first part of the following section reviews work in which the OCM has been
used, as suggested by Baron, to model closed-loop manual control with natural scene
viewing. The second part reviews work in which the Crossover Model is applied to
model closed-loop manual control. The fundamental difference in these approaches
is the philosophy of how the human applies the information: do humans do a recon-
struction of the system state (including vehicle dynamics and disturbances), then use
the reconstructed state to formulate a feedback solution? Or do humans find cues
in the visual scene that correspond to the desired state, and use this cue directly in
the feedback solution” The second view is the hypothesis embraced in this disserta-
tion. As will be seen, relatively little work based on this second approach has been
done previously. However, the work done with the OCM is highly relevant, since the
process of constructing a “measurement” from the image or scene is quite similar in

both approaches.

Optimal Control Model

Although the OCM for a human was developed after the Crossover Model was, it
was the first model to be combined with perspective scene viewing. Grunwald and
Merhav [32, 33] developed an optimal controller and estimator model of lateral con-
trol of a remotely piloted vehicle (RPV) using visual field cues. This model was
validated and modified with the results from an experimental evaluation, and could
generally be adjusted to provide good correspondence with the experimental data.
Grunwald and other colleagues have conducted a series of design and evaluation ef-
forts of combined perspective scenes and display symbology. In much of this work,
Grunwald determines what essential control elements are present in the unaugmented

perspective scene, and determines ways to improve closed-loop control either through
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adding perspective scene elements (such as tunnel-in-the-sky displays), or presenting
state information not available in the scene (such as accelerations) through predictor
or other symbology. Grunwald and Merhav [34, 35] considered augmentations to the
visual field cues for lateral control of an RPV. The tunnel-in-the-sky?* display con-
cept has been examined for helicopter approaches [39, 40], and aircraft approaches
[41, 42, 43]. Negrin and Grunwald [44] developed a perspective cueing structure to
aid helicopters performing shipboard landings using visual cue analysis. Grunwald
and Kohn also investigated the role of different cueing elements in low-altitude visual
flight [45, 46].

Wewerinke also applied optimal control modeling to examine the utility of a set
of simplified visual cues for use in the approach-to-landing task [47, 48]. He later
extended this analysis to the development of HUD symbology to augment the infor-
mation available in the visual scene for both good and poor visibility conditions [49].
Both of these efforts included experimental validation of the model. Wewerinke used
measured perceptual thresholds of particular visual cues to make a prior: predictions
of the observation noise covariance.

Baron, Lancroft, and Zacharias [50] developed an extensive OCM of the pilot in a
simulator (which featured both a motion system and computer-generated visual im-
ages). The visual-scene-perception model accounted for several nonlinear processes:

visual resolution, visual discrimination, quantization in the display (due to rasteri-

zation), and limitations to the field of view (FOV). Zacharias later extended several
of the concepts introduced in this work into two different models of human visual
scene perception. The first model, known as LINMOD, was used to describe visual
perception of line segments [51]. The model was based upon the assumption that
the operator could observe four aspects of a line segment; length, orientation, and
2-D location of the midpoint. The second model, TEXMOD, modeled perception of
a visual flowfield, as is thought to be perceived when the operator is translating or

rotating relative to the world [52, 53]. He later applied both of these models with

4While Grunwald was the first researcher to combine models of perspective scene viewing of
tunnels with manual control models, numerous other researchers have examined the tunnel-in-the-
skv concept. It was first studied by Wilckens [36]. Recent research efforts have included in-flight
demonstration and evaluation by at least two research teams [37, 38].
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OCMs to the altitude control task in low-level high-speed forward flight [54, 55]. An
informative review of Zacharias’ optimal-control modeling approach and experimental

results can be found in [56).

Crossover Model

The first perceptual scene modeling combined with the Crossover Model was done by
Johnson and Phatak [26]. They conducted an experiment in which altitude control
with various types of ground textures was examined {24]. For one particular subject
and ground texture, they showed that the operator’s strategy could be closely modeled
with a visual-cue model. This technique has the greatest similarity to the work
described herein. The similarities include the use of sum-of-sines input signals for
operator transfer function identification, linearization of perspective transformations
for linearized visual-cue analysis, and preliminary identification of a visual cue based
upon the transfer functions. In this dissertation, the experimental approach outlined
by Johnson and Phatak is extended to identify multiple visual cues, with a much
larger pool of operators and a larger number of visual scenes.

Mulder [57] has also combined Crossover Models with perspective scene viewing
models. Mulder has studied the performance of subjects with various tunnel-in-the-
sky symbologies, making a prior: predictions on which tunnel display features would
be susceptible to interference effects from combined lateral and longitudinal control
tasks. Mulder used the Crossover Model to determine if any systematic changes in
the pilot transfer function model parameters such as crossover frequency and phase
margin occurred as a result of changing display conditions. This work did not include

any identification of visual cues, or explicit modeling of visual-cue usage.

1.2 Objectives and Approach

There were three main objectives that motivated the work contained in this disserta-

tion. They were:
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e To develop a simple new model to characterize accurately manual control with

perspective scene viewing.
e Validate the model with a variety of operators and conditions.

e Identify potential visual-cue combinations through application of the model to

experimental data.

In this dissertation, a model that accounts for perspective scene viewing in a
manual control task is developed. The model is termed the Visual Cue Control
(VCC) model; it combines the previously described Crossover Model with a model of
perspective scene viewing and visual cue selection. Two different forms of this model
are developed and tested. One model form. termed the one-cue model, is based upon
the assumption that the operator obtains both position and velocity from one visual
cue on the perspective display. The other model, termed the two-cue model. is based
upon the assumption that the operator uses one visual cue for position, and another
for velocity. Both models incorporate the Crossover Model, and are partially described
by the parameters in this model. The models can be differentiated from each other
by an additional function which accounts for the perspective scene viewing. This
function is characterized in the one-cue model by the specification of one additional
parameter (called K, ); the two-cue model features two additional parameters (called
K and K.).

The models are validated and compared by 1) experimentally measuring the trans-
fer functions describing the human operator input/output characteristics, 2) fitting
parameters of each model to the measurements. The resulting models are evaluated
in two ways. First, the ability of each model form to fit the measurements is assessed.
Then, the consistency of the identified parameters with the adjustment rules of the
Crossover Model, and the expected values of the parameters from the perspective-
scene characteristics, is assessed. In many cases, it will be shown that the identified
parameters correspond to the values expected for particular visual cues.

The validation approach taken is quite similar to that described by Johnson and
Phatak [26]. The present work departs from the previous work in two primary areas.

First, the previous work applied to one operator in one condition. One objective



of the current work is to apply the model to a number of operators and a range of
conditions. Second, the previous work identified only one cue being used; the present
work expands the model to include two visual cues. It will be shown that the two-cue

model is required to describe most of the experimental conditions.

1.3 Contributions

The unique contributions made with this work include:

e Development of a simple model which for the first time accurately characterizes
human manual control through perspective scene viewing using a combination

of cues, not just a single cue.

e Development of more-comprehensive knowledge through a more complete data

set, with more statistical power, than the prior art.

e First detailed understanding through examination of visual cues, of the longi-

tudinal position-control task using a perspective scene.

e An improved understanding of the differences and similarities between perspec-

tive and compensatory displays.
e Development of simplified parameter-identification procedures.

e Demonstration of a methodology to identify visual cues used in a manual control

task.
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Chapter 2

The Visual Cue Control Model

The purpose of the work described in this dissertation is to provide a better un-
derstanding of this process by which we use perspective scenes for manual control.
Specifically, the goal is to model the input/output characteristics of the operator per-
forming a manual-control task while viewing a perspective scene. This model, termed
the Visual Cue Control (VCC) model, is based upon the hypothesis that the human
operator finds visual cues that correspond to the desired state, and uses the cues
in place of explicit state information (which is not available) to formulate a control
strategy. The model of the process is created by combining the Crossover Model with
a model of perspective-scene viewing and visual-cue selection.

Before proceeding into the model development, it is worthwhile focusing attention
on a particularly important concept. The term “visual cue” is used extensively in
this dissertation. A wvisual cue is, in essence, any definable feature or characteristic
of the visual scene. Student pilots learn to use the position and orientation of the
“line” made by the outside horizon, relative to the windscreen of the aircraft. The
orientation of the line correlates with roll attitude, and the height of the horizon line in
the windscreen correlates with pitch attitude. Likewise, the displacement of a distant
feature relative to the centerline of the windscreen correlates with the heading. The
hiorizon-line attitude references, and heading reference, are examples of visual cues
useful for attitude determination.

Other cues can aid position determination. Consider the case of a hover. A feature
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located in front of the operator would have a nominal position in the image. If the
operator moved forward, the feature would move down in the image; if the operator
moved back, the feature would move up. While the position of this feature in the
image is certainly correlated with the horizontal position of the operator, changes in
other vehicle states can also cause the feature to move in the image; specifically, the
vertical position of the feature would be affected by both altitude and pitch in addition
to horizontal position. Thus, in order to visually control longitudinal position using
the feature as a reference, the operator needs to isolate the effects of the various
degrees of freedom on the displacement of the feature in the image. This is obviously
a task that can be accomplished; the goal of the present work is to provide a better
understanding of how this is done.

As will be seen, this chapter contains the development of a model that is based
upon the assumption that a separate visual cue is being used to detect motion. This
concept defies easy description, but it can be likened to the use of peripheral vision
to detect motion in some portion of the image. That is, the operator likely fixates on
some feature of the image to provide a visual cue for good positional guidance, then
uses motion of the entire image, or in a particular part of the image viewed in the
periphery, as another visual cue.

These simple, qualitative descriptions will later be distilled into a set of very sim-
ple, quantitative models. These models will in no way capture the complexity or
richness of the human perceptual process, but rather isolate the minimal elements
necessary to describe the elements of the human operator being modelled (the in-
put/output characteristics).

The modeling approach adopted is to modify the Crossover Model to directly ac-
count for the effects of perspective scene viewing. Figure 2.1(a)! depicts an operator

performing a disturbance rejection task using a compensatory? display; Figure 2.1(b)

'The system depicted in Figure 2.1(a) is mathematically equivalent in form to Figure 1.1(a).
The system shown in Figure 2.1(a) can be made equivalent to Figure 1.1(a) by 1) transforming the
forcing function through the negative inverse of the controlled element, and 2) using it to replace
the commanded state in Figure 1.1(a). This new representation is developed to correspond with the
perspective-display-viewing condition.

2The term compensatory display is used even though there is no commanded input; in this case,
the commanded input is zero, and the forcing function is being injected instead as a disturbance to
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depicts the same task with a perspective display. With the compensatory display,
the operator is viewing only direct measurements of the system output (i.e., con-
trolled state). The perspective display, on the other hand, will generally be affected
by all of the vehicle states, potentially even ones that are not being directly con-
trolled. This is depicted in the figure with the injection of an additional disturbance
as an uncontrolled state. Mathematically, the case of perspective-display viewing is
fundamentally different in two ways: 1) the perspective display is affected by both
controlled and uncontrolled states, and 2) the perspective display performs a nonlin-
ear transformation on these states. The transformation typically couples the states
to such an extent that there are rarely characteristics of the perspective scene that
exhibit a one-to-one correspondence with a particular state.

Two different perspective-based model forms will be developed and tested in this
dissertation. Omne model form, termed the one-cue model, will be based upon the
assumption that the operator obtains both position and velocity from one visual cue
on the perspective display. The other model form, termed the two-cue model, will be
based upon the assumption that the operator uses one visual cue for position, and
another for velocity. The one-cue and two-cue models take the form of parameter-
ized transfer functions. Both model forms incorporate the Crossover Model, and are
partially specified by the parameters of the Crossover model. The models differ from
each other through an additional function, which is an outcome of the perspective
display and visual-cue selection process: The one-cue model is specified by one addi-
tional parameter, and the two-cue model is specified by two additional parameters.
These parameters are directly related to the visual cues.

Determination of which (if either) model form is accurate must be done experi-
mentally. This experimental validation is done by fitting parameters of both models
to measurements of the input/output characteristics of the human operator. As the
models are based upon the Crossover model, one would expect the input/output
characteristics to be sensitive to the same factors that have been shown to affect
the Crossover Model parameters. Additionally, the human-operator characteristics

should be sensitive to changes in the visual cue selected, and to characteristics of

the controlled element.
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Figure 2.1: Two idealized manual control systems, depicting a regulation task in the
presence of disturbances. The figure on the left (a) depicts the operator presented with
a compensatory display. The figure on the right (b) depicts the operator presented
with a perspective display. The two forcing functions represent independent wind-gust
disturbances.

20



4 ™\ ( ™
Limb
Position 3‘_ Total
E r:l=orctmg Ope,;‘; Ea‘_Forcmg
unetion Output Function
Manipulator
Dynamics
T Operat oo n Controlled - _n—,mﬂ_ a_nl ___________ 1
! Oulpu‘:' ! Element ! ———Ea | Controlled
! [ Dynamics ) ) Element
) Dynamics | ) Output Linearly ) Yelhw)
! Limb 1 Controlled | Correlated with X
) Applied | State | Forcing Functions |
! Force ! | Op Transter F |
' s | [ 1
i Equnll.nﬂ’:m, | | Y ( jw, forcing functions, Y, I 1
) Force A 1 I Human perspective display, |
) Characteristics \ ) Operator visual cue(s)) )
! Human Visual Cue I 'Dynamics !
1 Operator Selection | VL __ y_ )
Bl - - -~ nirolled Uncontrolied Controlled
Perspecti & State| | State
Display State
State
Forcing
Function
Faorcing
Function
- J/ — J/

(a) Idealized manual control system using a
perspective display.
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Figure 2.2: Two depictions of the human operator performing a manual control task
while viewing a perspective display.. The figure on the left (a) depicts an idealized
block diagram of the system. The figure on the right (b) depicts an equivalent block
diagram of the system, useful for measurement and identification.
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the perspective display. Figure 2.2(a) shows the conceptual diagram of the VCC
model, alongside an equivalent block diagram (Figure 2.2(b)) which illustrates the
input/output function dependencies.

This chapter contains the development of the models and tools necessary to specify
and validate the VCC model. Section 2.1 contains a description of the task that was
used for model development and experimentation. Section 2.2 contains the derivation
of a linearized model that accounts for the perspective display and visual-cue selection.
In Section 2.3, this model is combined with the Crossover Model to create two different
VCC model forms, the one-cue model and the two-cue model. Section 2.4 describes
the measurement techniques used for experimental validation of the model forms.
Section 2.5 contains an analysis of what parameter values are expected for a small

subset of visual cues.

2.1 Task

The task considered here is an idealized hover of a helicopter-like vehicle, say, in
the presence of disturbances (in Figure 1.1(a) or 1.1(b) this means commanding the
output to be zero). The only degrees of freedom allowed were longitudinal motion
and pitch; all other degrees of freedom were assumed held constant by other controls.

The transfer functions representing the vehicle dynamics are taken to be:

1
os) = <qls) 22)

§ is the joystick displacement, z is the longitudinal position in eyeheights®, and 8 is the
pitch attitude in radians. In this task, # and z were taken to be independent of each
other. u is a disturbance to the longitudinal acceleration in units of eyeheights/sec?,
and q is a disturbance in pitch rate in units of rad/sec.

Operators were instructed that the vehicle they were controlling was not any real

vehicle; the vehicle moved forward when the joystick moved forward, and aft when

3For a constant-altitude task. it is convenient to scale distances relative to the altitude, or height,
of the eyepoint of the operator. This is discussed in more detail in Section 2.2.
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the joystick moved aft. They were told that there would be longitudinal wind gusts
as well as pitch disturbances, but the pitch did NOT affect the fore-aft motion, and
they were NOT controlling pitch. Pitch and longitudinal motion were decoupled to
facilitate visual-cue identification. The disturbances q(s) in pitch rate and u(s) in
longitudinal acceleration (e.g., from the wind gusts) were each made up of a sum
of 12 sines, with unique frequencies for each disturbance, to facilitate measurement
of the operator response relative to the two degrees of freedom. Specific details of
the disturbance spectrums, as well as the discrete transfer functions used to simulate
the dynamics for Experiments 1 and 2, are contained in Sections D.1 and E.1 of

Appendices D and E, respectively.

2.2 Perspective Visual Cue Selection Model

This section contains the development of a model to characterize the process of
perspective-display viewing and visual-cue selection. This is done by defining a visual
cue to be some characteristic of the perspective scene, and then determining the trans-
formation between the relevant perspective-scene characteristics and the controlled
and uncontrolled states, through the process of perspective projection.

The perspective projection process can occur through 1) natural viewing of a

scene. 2) camera imaging, or 3) computer-generated imagery. It is the process by

which the 3-D coordinates of world features are transformed into 2-D image coordi-
nates [58]. These image coordinates can be on a display, as in the case of a camera
image or computer-generated imagery, or with the proper projection parameters, on
the human’s retina. The current analysis will include only the case of Computer Gen-
erated Imagery (CGI). This implies that the surface onto which the image is projected
is assumed to be flat (as in camera imagery or CGI) as opposed to curved (as with
the retina).

The factors that affect the perspective projection are: 1) the locations of scene
features, and 2) the location and orientation of the imaging device, and 3) the imaging
device characteristics. The imaging device characteristics can include field of view

and/or focal length, and are typically constant for a particular situation. The scene
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features descriptions are typically available relative to a fixed, or world, coordinate
system. Another coordinate system fixed in the vehicle being controlled is useful to
describe the motion of the vehicle (in which the camera is located) relative to this fixed
coordinate system. One coordinate system description which has been widely adopted
in the field of aeronautical engineering is described by the Eulerian Angles [59].

In Appendix A, the general transformations between the position of scene features
in world coordinates, position and orientation of the operator relative to the world
coordinates, and the position of the feature in the image are derived. These relatively
complex relationships, contained in Equations A.4 through A.6, are of course greatly
simplified by taking into account the constraints of the task under consideration. This
(purely geometrical) situation is represented in Figure 2.3. With these simplifications,
the relationship defining the image-plane coordinates of a particular scene feature

become:

o FDy
YT TUDx = X)O —9) (2:3)

. _F((Dx = X)s© +O)
7 ((Dx — X)cO —s0) (24)

in which F is the focal length, X is the longitudinal position of the operator, Dx and
Dy are the longitudinal and lateral locations, respectively, of a scene feature. The
expressions s© and cO© denote the sine and cosine of O, respectively. For this task,
the only degrees of freedom are longitudinal position and pitch attitude. Altitude is
held constant, and the distances X, Dy and Dy can be scaled in units of eyeheights,
making Dz = 1.

A visual cue is defined to be some function of the image-plane coordinates, which
are in turn functions of the operator state and scene features. The visual cue A is

represented as follows:

A:G (yz-zz) = Gworld(Xaele\'vDY’F) (25)

image

Gimage(') represents an arbitrary function of the image-plane coordinates (y,, z,).
Gworld (®) represents the same function but expressed in terms of the “world” char-

acteristics, specifically the position and orientation of the operator (X, ©), position
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Figure 2.3: Perspective projection diagram for simplified hover task. The imaging
device has a focal length F. The operator is located at a position X. with a pitch
attitude ©. The location of a particular feature being imaged is Dy, Dy. The
position of the feature in the image is denoted with y,, z,. All distances (X, Dy,
Dy ) are scaled in units of eyeheights (the height of the eye above the groundplane).
Equations 2.3 and 2.4 describe the relationship between the observer state (X, ©),
feature location (Dyx, Dy), focal length (F'), and location of the feature in the image

(y.. z,).
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of the scene feature (Dy, Dy), and focal length (F). It is obtained by substituting
Equations 2.3 and 2.4 into Gimage(yh z,). The parameters Dy, Dy, and F are fixed
for a particular feature and imaging geometry; the only variables are X and ©.

The transformation between these variables, X and ©, and the image-plane coor-
dinates, vy, and z,, is nonlinear, as can be seen by examining Equations 2.3 and 2.4.
A linear relationship is desired for incorporation with the Crossover Model, since it is
the linear input/output relationships of the human operator that are being modelled.

A linearized visual cue A, based on the visual-cue description A, is defined as:

dA
N= — 2.6
INJOX |y oms (2:6)
where oA oA
dA = | 2= er+[—~ }d@ (2.7)
X=0.0=0 {8X x:o,ezo} 99| x_p.0—0

In this definition. the differential of A is normalized with dA/0X to create one-to-
one correspondence between the linearized cue A and the longitudinal position. This
was done to simplify incorporation into the Crossover Model. With this scaling, and

substituting z = dX and ¢ = d©, Equation 2.6 becomes:

A=z + K\ (2.8)
where 91 /00
K, = )
* T OAJOX |y s (2:9)

This linearized visual cue X is simply a linear combination of the states = and 6.
The variable K specifies the relative contributions of # and z to the displacement of
A, and is determined by the function defining the cue, A.

This concept can be more easily understood by applying this derivation to an
example. Figure 2.4 contains a diagram of a perspective scene, with an example visual
cue A illustrated. In words, this cue is the vertical location, in image coordinates,
of the dashed line on the image. This line, in world coordinates, is taken to be at a
constant longitudinal position Dx.

In equation form, it can be expressed as:

___F((Dx = X)s© +¢0)
A=2= "Dy —X)0 —50) (210)
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Figure 2.4: Visual cue used for example analysis. The cue consists of the vertical
position of the feature (the line in the foreground) relative to the fixed image frame.

For this example cue that we have defined, we can calculate K, by: 1) taking the
partial derivative of A, defined in Equation 2.10, with respect to X and 0, 2) evalu-
ating those derivatives at the linearization conditions, and 3) substituting them into
Equation 2.9. The intermediate steps are not shown; the final result for this example
cue is:

K\,=1+ D% (2.11)

Expressions for K for specific visual cues will be derived in Section 2.5.

The pufpose of the preceding derivation was to develop a linearized model of a
visual cue (\), to be used as an input to an operator model. In the next section,
one or more linearized visual cue models will be combined with the Crossover Model
to provide models of manual control which account directly for perspective-scene

viewing.

2.3 Visual Cue Control Model

This model is based on the hypothesis that the human operator finds visual cues that
correspond to the desired state, and uses the cues in place of explicit state information

(which is not available) to formulate a control strategy. Two forms of the model will

27



be developed; one in which one visual cue is used, and another in which two cues are
used.

There is substantial psychophysical evidence that the human visual system has
specialized structures to process motion in the visual stimulus [60]. Studies dating
back more than 100 years have determined that the perception of motion is not just
the perception of change of position over an interval of time, but appears to be highly
specialized (and, fortunately, easily fooled, or we would not perceive television or
movies as we do). The ability to sense static features (position) separately from
moving features (motion) is assumed in the model.

In the model, the operator acts on information from both sensing systems. Two
different forms of model are considered; one in which both the position and motion
sensing system processes information from the same stimulus, and another in which
the position and motion sensing system concurrently processes information from two
different stimuli. The two model forms, and the expected transfer functions, are
developed in the Sections 2.3.2 and 2.3.3.

While it is not possible to establish and define precisely what cues an operator
is using, it can be determined, as a function of scene texture — as we shall see from
experiments — how many cues are being used, and what texture features enable what

level of control performance.

2.3.1 Crossover Model Predictions

Before considering the human operator response using a visual cue, it is worthwhile
to review what the Crossover Model would predict for the human operator being
presented with explicit state measurements?; refer to Figure 2.5. The controlled-
element dynamics were defined in Equation 2.1. Specifically, Y.(s) = 1/s(s + 0.2).

The Crossover Model predicts that the product of the controlled-element dynamics

4The VCC model described herein is based upon a manual control model for a compensatory
task; this implies that only the error between the commanded and actual state is presented to the
operator. It can be applied to this task when the “commanded” state is zero (or constant). The case
in which some explicit or implicit dynamic commanded state is present would require application
of pursuit models of manual control. This case would lead to the incorporation of a feed-forward
element of the commanded state in the control strategy.
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Figure 2.5: Block diagram of Crossover Model for current task, assuming explicit
state measurement is available. Note that there is no “commanded” state z.. For the
disturbance rejection task considered here, the “command” is to remain stationary;,
or . = 0.

and human-operator compensation will be approximately:

Vy(s)Yels) = 5 (2.12)

in the frequency region of crossover. The crossover frequency w, is the frequency

at which the open-loop transfer function Y,(s)Y.(s) has a magnitude of one (Equa-

tion 1.2). It can be seen from inspection that when s = jw,., the magnitude of
Y,(s)Y.(s) in Equation 2.12 becomes unity. Accounting for the fact that the human

can probably not generate 5 seconds of lead compensation [1], one would expect the

operator dynamics to take the approximate form:

p(s) = :j—ze‘”(s +wi) (2.13)

where wy, should occur at a frequency below crossover, and at or above 0.2 rad/sec
(()2 <wyp < wc).
Figure 2.5 shows a schematic diagram of this assumed compensation strategy. The

transfer function between the control and the state would be:
§(s) = =Y, (s)z(s) +7(s) (2.14)
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Figure 2.6: Block diagram of one-cue model for current task. The explicit state mea-
surement shown in Figure 2.5 has been replaced with a visual cue, a. The visual cue

the operator will in fact see in his view is represented as a sum of the state x and
the pitch attitude 6 multiplied by the factor K,. K, represents the relative contri-
butions of § and z to this particular cue; it is governed by the process of perspective
projection. As in the case of explicit state measurement previously considered, the
commanded visual-cue state is zero (i.e., “don’t move”).

Note that the term 7(s) is included in this transfer function and in the diagram;
this represents remnant “injected” by the human operator into the control activity.
Specifically, it is the control activity that is not linearly correlated with the input.
This component of the control activity of the human will receive more attention in

Section 2.4, in which measurement techniques will be discussed.

2.3.2 One-cue Model

We turn now to the case in which the explicit state information considered previ-
ously is replaced with a visual cue (), which has presumeably been obtained from a
perspective display (see Figure 2.6). The visual cue « is some characteristic or fea-
ture of the image, but as was shown in Equation 2.8, it can be expressed as a linear

combination of the states z and 6:
a(s) = z(s) + K,0(s) (2.15)
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The eye-brain system infers both « and its derivative from a perspective scene like
Figure 2.4. The operator does not have any explicit measurement of the state z
available in this case; instead, the operator selects a visual cue o which is correlated
with z, and controls «a directly.

The system of transfer functions relating control ¢, longitudinal position z, and

pitch attitude 6 is:
0(s) = =Y, (s)z(s) — Yy, (s)Ka0(s) + 7(s) (2.16)

where Y,(s) is shown in the gray box in Figure 2.6. The only difference between
this transfer function, and the one previously defined using the Crossover Model
(Equation 2.14), is the addition of #(s), which reduces the level of correlation between
the visual cue a and the desired state®. Since the parameter K, directly scales the
magnitude of the disturbance (#) being added to the system, one would expect the
operator to choose a visual cue that minimizes the magnitude of K, so that the true

position z dominates the cue.

2.3.3 Two-cue Model

We will now consider the case in which the operator is using two visual cues to
accomplish the task (Figure 2.7). In this model, one visual cue () is being used for

position, and another cue (/) is used for motion, or velocity. 4 and /3 are defined as:

v(s) = xz(s)+ K,0(s) (2.17)
B(s) = z(s)+ Kzb(s) (2.18)

In this case, the eye-brain system is inferring 7, and the derivative of 3, from the
perspective scene. These two cues could be likened to the position of a feature in the
image (), and the motion of some portion of the image detected in the peripheral
vision ().
The transfer-function system relating ¢, x, and 8 for this case is:
(s + (K, / Kg)ws)
(s +wr)

§(s) = =Yp(s)z(s) = Y,(s) K3 0(s) + r(s) (2.19)

5In this case, 8 is in fact independent of z. so it acts here as an independent disturbance.
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Figure 2.7: Block diagram of two-cue model for current task. The operator is now
assumed to use one visual cue for position 7, and another for motion 3. Note that the
“differentiation” of the motion cue, 3, occurs inside the operator; there is no direct
display of motion in the perspective display. This motion cue is only derived through
the perceptual process of the human. The presence of two separate cues, for motion
and position, implies that the operator is concurrently attending to and using two
sources of visual information. The commanded state, as in the previous cases, is to
maintain the current visual-cue state (i.e., “don’t move”).
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Mathematically, this differs from the one-cue model (Equation 2.16) through the
addition of a lag-lead element multiplying #(s) in the two-cue model (lag-lead for
K., > K3). The two models are otherwise identical. As was the case with the one-cue
model, the terms K3 and K, arc essentially gain terms which scale the disturbance
source (#) being added to the states; one would expect the operator to minimize K
and K, when possible. Also note that this model reverts to the one-cue model form

when K and K, are equal: Kz = K.

2.4 Transfer-Function Measurements

Equations 2.16 and 2.19 describe models that represent the characteristics of the
human operator. If the objective is to determine the functions and parameters in the
models (Y, K,, g, K,), the available experimental measurements must be related to
these model functions. The Sum-of-Sines (SOS) technique has been used extensively
in manual control to develop transfer functions from measurements. The basic steps

are:

1. Design input signals that enable effective identification
2. Relate the cross spectral densities to model transfer functions

3. From time-history measurements, estimate pertinent cross spectral density ra-
tios
4. Identify model parameters to fit the transfer functions

The last step in this process, identification of model parameters, will be discussed
in the subsequent chapters. This is because the number of parameters used in the
models varied with experimental treatments. In this section, the first three steps will

be discussed. Much of the detail is included in the appendices to facilitate explanation.

2.4.1 SOS Input Signals

The first step, design of the input signals, is what sets SOS techniques apart from

other transfer function measurement techniques. In this technique, multiple sine
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functions, at different frequencies, are summed to create a random-appearing input

signal. There are several advantages to using this type of input signal:

1. Signal power is concentrated in discrete frequencies, creating good signal-to-

noise characteristics.

2. The random appearance of the signal prevents the operator from anticipating
the input (which would elicit a predominantly open-loop, rather than closed-

loop, control strategy).

3. The input signals can be designed to simplify the relationship between the cross
spectral density estimates and the transfer functions. This is accomplished by
creating independent signals, which act simultaneously on a system, and have

no linear correlation with each other.

The design of the input signals involves specifying multiple parameters, including
the run length, sampling intervals, and frequency components. Guidelines for proper

selection of these parameters are presented in Section B.1 of Appendix B.

2.4.2 Transfer-Function Relationships

The second step of the process is to relate the cross spectral densities of system states
to model functions. Figures 2.8 and 2.9 contain block diagrams for the purposes of
identification for the one-cue and two-cue models, respectively. The terms u and ¢
are the disturbances to the longitudinal acceleration and pitch rate, respectively. The
term 7 is the remnant component of the human control output; it is that component
which is not linearly correlated with the inputs to the operator.

For the one-cue model, the following relationships can be derived:

1

§ = ——[-V,Yu—Y,K.0 2
1

= ———\Yu-Y,Y.K,0+Y, 2.2

(2.22)
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Figure 2.8: Block diagram of one-cue model used for transfer-function identification.
The free parameters assumed in this model form are the parameters that specify the
transfer function Y}, and the visual-cue parameter K,. K, is related to the one visual
cue that is used for both position and motion sensing. This realization is equivalent
to that depicted in Figure 2.6.

)\r u
+ +
Y ; o + Yc X -

S kISt &Koy d | 0 [T

[s + o ] S

Figure 2.9: Block diagram of two-cue model used for transfer-function identification.
The free parameters assumed in this model form are the parameters that specify the
transfer function Y, and the visual-cue parameters K3 and K.,. Kj is related to the
visual cue for motion, K, relates to the cue for position. wy, is one of the parameters
of Y, (not shown explicitly here), and defines the amount of lead the operator is
generating. This realization is equivalent to that depicted in Figure 2.7.
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The relationships of the ratios of power spectral densities and cross spectral den-

sities are:
Dsu _ =Y, Yo 0uu — Yo K@ + Ory (2.23)
Ozu Yetuu — Yo Yo Kooy + Yot
Psq _ I =Y, Yibu — Y, Kodpgq + &rg (2.24)
Goq . 1+ Y)Y, bogq

No assumptions have been made about the input signals w and ¢ up to this point.
The SOS technique can be used to make u and ¢ uncorrelated with each other.
Specifically, for ¢g, = ¢,4 = 0, the Equations 2.23 and 2.24 become:

Psu_ YpYeDuu + Ory

_ 2.95
¢Iu }/Cqbuu + Y’Cér‘u ( )
Pog _ L YoKadu F ¢ (2.26)
¢0q 1— }/p}/c ¢)0q ‘

If we further assume that the remnant noise source r is not correlated with the input

signals ¢ and u, making ¢, = ¢,, = 0, the relationships become:

z““ vy, (2.27)
<1’>_sq_ _ _Yfa (One-Cue) (2.28)

Goq 1-Y,Y,
These relationships give us a direct method for determining the functions to describe
Y, and K,. The two-cue case is quite simple to derive from this point. In the block
diagrams, the only difference between the one-cue and two-cue models is that in the
two-cue model, the term K, present in the one-cue model is replaced with a more

complex term. By substituting this term in for K, derivation of the two-cue case is

trivial:
Z‘”‘ =, (2.29)
K
; Y, K5 ($+ 7we)
Poa PP 4G (Two-Cue) (2.30)

b0, 1YY, (s+wy)

2.4.3 Cross Spectral Density Estimates

Equations 2.27, 2.28, and 2.30 defined the relationships between the model functions,

and particular power and cross spectral densities. The actual parameters measured
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in an experimental run are time histories of 6, z, 6, ¢, and uv. When using the SOS
technique, the cross spectral density measurements can be approximated by products
of the coefficients of the Discrete Fourier Transforms (DFTs) of the time signals [61].

The relationships are:

bs.(fw) = DNV (2.31)
Gulfen) = XU (2.32)
bsalfr) = DUNQUY (2.33)
bualfwn) = O (2.34)

where N is number of points in the time sequence, and D(f), U(f), Q(f), and

O(f) are the coefficients of the DFT of the respective time sequences. For a discrete

sequence z(n), n = 0,1,..., N — 1, the DFT coefficient X (f) is defined as:
Nl n k
X(H=> :r(n)e:cp(—j?wlcﬁ), f= N k=0,1,...,N -1 (2.35)
n=0

The variable f is a “normalized” frequency which goes from values of zero to N/(N —
1). Note that the cross spectral densities have been expressed as a function of fwy,
which is a frequency related to the time domain (in rad/sec). w, is the sampling

frequency, related to the sampling interval T

(2.36)

V(fw) = LU (2.37)

Yty — DTIQTT) 3

From Equations 2.27, 2.28 and 2.30 above, we expect these quantities to be related

to the models as follows:

Both Models: Y, = Y, (2.39)

37



One-Cue Model: Yy, = Y (2.40)

Two-Cue Model: Yy, = Yp (2.41)
where
YK
Yo = —2 2 2.42
b1 VY. (2.42)

YK, (s+ 72wr)
1-Y,Y, (5+wr)

Yoo

To summarize, )A/p and Yj are the ratios of the estimated power spectral density and
cross spectral densities of specific time histories. Note that the measurements Yp and
Y, are based upon ensemble averages of multiple time histories. This technique was
developed by Levison [62], as were methods to estimate the standard error of the
measurement. This is described in more detail in Section B.2 of Appendix B.

The techniques up to this point describe only how to inferrentially derive the
transfer functions }A’;, and Y} from the available time histories. These transfer functions
are related to the model parameters in the last step of the process. This process is

described in detail in Section 3.2.2.

2.5 Parameters of the Visual Cue Control Model

Section 2.2 contained the development of a model of perspective-scene viewing and
visual-cue selection. This model included a parameter (K, Equation 2.9) which was
a function of the particular visual cue selected. In this section, the expected values
of that parameter, for a variety of potential visual cues, will be derived.

Prior to discussing particular cues, two concepts will be introduced that are rel-
evant to the examination of all cues. The first concept is that of absolute versus

relative cues. The second concept is that of choosing directional components.

2.5.1 Absolute versus Relative Displacement

Because the image surface is two-dimensional, displacements of scene features with

respect to any reference should be described as a vector. Using the image-plane
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coordinate system as the reference, we will denote the displacement of feature i to be
(Figure 2.3):
d, =y, + z,k (2.44)

This type of displacement, measured in the image-plane coordinate system, will be
defined as an absolute displacement. It is also possible to consider the displacement
between two features in the image. The vector displacement between the ith and jth

features would be:

d,—d, = (y, —y)j + (2, — 2)k (2.45)

This type of displacement will be defined to be a relative displacement.

These displacements have been defined in terms of the image-plane coordinates.
For later manipulations, it will be necessary to express these displacements in terms
of the feature locations and operator location and orientation. Substituting Equa-
tions 2.3 and 2.4 into Equations 2.44 and 2.45 produces:

—F{ Dy, it ((Dx, — X)s© + cO)
((Dx, — X)cO —s0) ((Dx, — X)cO —s0)
d,—d = F[{ Dy, _ Dy, }
(Dx, — X)c® —s0) ((Dx, — X)cO —s0)

{((DXI - X)sO+cO) ((Dy, —X)s@+c®)}A}

i} (2.46)

>

k

((Dx, = X)c© —s0)  ((Dx, — X)cO —sO) (2.47)

+

Defining the vector displacement of a feature relative to the image-plane coordi-
nate system is only one step in the definition of a visual cue. As used in the model,
a visual cue is a scalar, not a vector, quantity. To convert these vector displacements

to a scalar quantity for use as a visual cue, the concept of directional components is

introduced.

2.5.2 Directional Components

The assumption is made that the operator is capable of attending to displacement that
occurs in a particular direction or orientation. Indeed, often the motion can only be
discerned in one direction (as in the case of a line, where motion along the line cannot

be discerned; only motion perpendicular to the line can be detected). One probable
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Figure 2.10: Coordinate system used to derive directional visual cues.

cue would be discerning displacement in the vertical or horizontal direction. In cases
where the image has a sharp outer boundary (as in the frame of a monitor), this
boundary can serve as a strong, fixed reference for the operator. In addition to vertical
and horizontal components, the operator might be able to attend to displacement that
occurs in the direction of a scene feature. One such feature might be along lines of
splay®. Particularly in the case where the operator is viewing a scene through a non-
rectangular window (as is the case with many vehicles), the operator might also attend
to displacement or motion in a different direction than the image coordinate system
derived here. In that case, we can express the absolute and relative displacements in

terms of another coordinate system through a coordinate transformation.

A new coordinate system can be defined, j' and &' (Figure 2.10):

7" = Jjcos(€) + ksin(€) (2.48)
ko= —jsin(€) + kcos(€) (2.49)

Combining these definitions with the absolute and relative displacements derived

6A line of splay is a line parallel to the direction of motion. In the experiments done in this
research the lines of splay are always longitudinal, which is the direction of motion.
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above, we can express the displacements relative to the new coordinate system:

d, = (y,cos(€) — z sin(€))j + (. sin(€) + z, cos(§))N (2.50)
d, —d, = ((y, —v,)cos(§) — (z, — )sm(é))j’
+((y, — v) sin(€) + (2, — 2,) cos(€))k’ (2.51)

These relationships can also be expressed in terms of the scene and operator variables

as was done previously.

‘-

(D
(D

Dyl
X)cO —s0)

(Dx = cos(¢)
\ /
. J

- X)s©+cO) | s
= X)c@ —50) ‘”(5)}

(
((
+{ (Dx, — X ©—s0) ‘1)
LU
i

Dy, — X)s© +cO) ",
(Dx — X)c6 —50) os(f)}/\} (2.52)

DYJ

F[{ D\ "X C@—S@) ((DX — )C@_S@))Cos(g)
((Dx, — )s@—i—c@) (Dx, — X)s@—l—c@)) }?’
( ((Dx, — )c@ —s0) ((Dx, — X)cO — s0) sin(§) ¢
Dy] .
+{ (Dx, — c@ —s0) ((Dx, — X)cO — Se))bln(f)
((Dx, = X)s©+cO) ((Dx, — X)sO +cO) .
+(WJ\ ~X)c® —s0)  ((Dx, — X)c® — se))m@}k] (2.:53)

To examine cues that are relative to lines of splay, it is necessary to determine
the coordinate transformation. Defining the angle a splay line at Dy makes with the

vertical to be &, the sine and cosine will be:

DyC@

sin(f) = m (2.54)
-1 (2.55)

cos(é) =
\/ DyQCQ@ +1
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For relatively small values of ©, this angle will essentially be fixed for a particular
line. That is, the angle of a particular line of splay (located at a lateral displacement

Dy, in the above equation) will remain fixed.

2.5.3 Illustrative Examples

These concepts will now be applied to the derivation of several possible cues for
the current task. The desired quantity is the relationship K, which determines
the relative contributions of longitudinal displacement and pitch displacement to the
visual cue displacement. Five different types of cues will be defined, and an expression
for K, will be developed for each one. Examples of each type of cue are shown in

Figure 2.11.

Absolute Vertical Displacement (A,)

This cue is equivalent to the operator attending to the absolute vertical displacement
of a feature in the image. The value of this displacement will be determined from
the component of absolute displacement in the k direction of Equation 2.46 (which

is equivalent to z,).

((Dy, — X)sO + cO)

A, =—-F 2.56
({(Dx, — X)cO — s0) (2.56)
The value of K is defined as: /
OAN/OO
KA—OA/OX (2.57)
From the previous definition of A,, we can compute:
O\, _r s© _ O[(Dx, — X)sO + c(;)] (2.58)
0X [(Dx, = X)c© —=s0]  [(Dx, — X)cO — s6O)]
AN, [(Dx, — X)s© + c@]QJ
= —Fl|1+ - 2.59
e [ (Dx. — X)c@ — 5] (2:59)
Evaluating at the linearization conditions of X = 0 and © = 0, we have:
O0A F
. = —— (2.60)
oA 1
& = —-F|14+ = 2.61
99 X=0.6=0 [ " D?’ } ( )




Figure 2.11: Examples of potential visual cues. Cues can be defined as the position
of a feature, or the displacement between two features. Potential features include
lines, and junctions of lines (such as grid intersections). The displacement of a line
whose endpoints lie outside of the frame of the image can only be observed perpen-
dicular to the line, and thus the direction in which displacement or motion can be
detected is constrained. Particular points, such as formed by grid intersections, can
apparently be displaced or have motion which is unconstrained. The subscripts 2 and
Ah refer to visual cues formed by horizontal judgements made in the image plane;
it can be the horizontal displacement between two features (Aay), or the absolute
horizontal displacement of a feature in the image (Aj). The subscripts v and Av refer
to vertical judgements, such as the absolute vertical position of a line, or the vertical
displacement between two features (A, and Aa,, respectively). The s subscript refers
to judgements in displacement or motion of a feature that are made relative to the
direction of a line of splay (A;), and is thus highly dependent on the location of the
feature in the image (since the angles of lines of splay vary as a function of their
location in the image.)
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Correspondingly, K for this cue is:
K\, =D% +1 (2.62)

Note that Dy, is the longitudinal position of the feature relative to the operator.
As the feature gets farther from the operator, K, 6 gets larger rapidly. If the goal of
the operator is to choose the lowest possible value of K, for this visual cue one would
expect the operator to use the closest feature available.

In the remaining derivations, the expressions for dA are presented for X = 0 and

© = 0; the intermediate derivation steps are omitted.

Absolute Horizontal Displacement (Aj)

This cue is equivalent to the operator attending to the absolute horizontal displace-
ment of a feature in the image. The value of this displacement will be determined
from the component of absolute displacement in the j direction of Equation 2.46

(equivalent to y,).

Dy,
A, =-F . 2.63
"7 T ((Dx, — X)c© — s0) (2:63)
The differential of this cue is:
D D
dAy, = —F=Ldx - F=X.40 (2.64)
X=0,6=0 Dy, Dy,
For this cue, the value of K at any location in the image is:
Ky, =1 (2.65)

Relative Vertical Displacement (Aa,)

With this cue, the assumption is made that the operator can perceive the vertical
component of the relative displacement of features located at longitudinal positions
Dy, and Dy, .

(Dx, = X)s© +¢©) ((Dx, — X)sO +cO)

_ 7! _
Aaw = F ((Dx, = X)c© —s0)  ((Dx, — X)c© —s0) (2:66)
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The differential is:

- F[D;Q - %5} dX + F[!]% - %]d@ (2.67)

dAAv

H

X=0.6=0
For this cue, the value of K is:

[&’AAIJ = 1 (2'68)
K),, is not dependent on the features chosen for reference. An example of this cue

would be if the operator were attending to the displacement between the horizon and

the baseline.

Relative Horizontal Displacement (Aay)

With this cue, the assumption is made that the operator can track magnitude of
the horizontal component of the relative displacement of features located at lateral

positions Dy, and Dy, .

Axr = F Dy, Dy, (2.69)
BT T (Dx, = X)e® —s0)  ((Dx, — X)cO — s0) '
The differential is:
Dy D}' - Dy Dy

dA =F = — —5|dX + F s — L | dO 2.70
o X=0,6=0 {D/\'zQ DXJQ} l'DXzQ DXJQ] ( )

For this cue, the value of Ay is:
K’)\Ah =1 (271)

Again, K, is unity, regardless of the features chosen for reference. An example of this
cue would be if the operator were attending the displacement between two points on

the baseline.

Displacement Aligned with Splay Line (A,)

To determine the component of displacement that is aligned with the splay line, the
K’ component of d, in Equation 2.46 is combined with Equations 2.54 and 2.55. As
derived here, this is an absolute cue, since it is based on the component of the absolute

displacement d, that is parallel to the line of splay. In practice, to use this absolute
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cue. the operator would need to remember the original position of d, in the image
plane, derive the displacement from it, then determine the component of displacement
along the nearest line of splay. While this does not seem practical for position sensing,
it is plausible that the operator can sense the motion of this cue: that is, the operator
could sense the component of motion of the point parallel to the line of splay near

(or on) which it lies. The expression for this cue is:

A _ ——F{ Dyz Dy’lC@
° ((Dx, = X)c© —$0) /Dy 220 + 1
((Dx, — X)s© + cO) 1 }
+ z 2.72
((Dx, — X)c© — sO) /Dy12(:29+1 ( )
The differential of this cue is:
Dy?+1 Dy?+1)+ Dy? '
dA, _op Dn )y pDv A D FDx g (2.73)
X=0,6=0 l))(l2 Dy12+1 DXIQ Dyz2+1
The value of K, will be: ) \
Dy ' 1
Ky, =20 T Dx,” + (2.74)

Dy +1
The sensitivity of this cue varies as a function of location in the image. Transforming
the expression back into image coordinates can be done by recognizing that for X =0
and © = 0, the relationship between screen coordinates (y,, z,) and feature coordinates
(Dx, Dy) is:

Dy
, = —F 2.75
Y Dx (2.75)
1
= —F— 7
2 FDX (2.76)

Substituting these expressions for Dy and Dy back into Equation 2.74 will provide
an expression for K, that is a function of screen coordinates, y, and z,, and focal

length F":
FQ
Y+ 2}

When lines of constant K, are plotted as a function of image coordinates, it can

Ky, =1+ (2.77)

be seen that the isolines of K, are concentric circles radiating out from the image
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[Cue (N) [ K\ |

A, Dy +1
)‘Av 1
Y 1
Aah 1

DT DI 1
/\L‘ D5 +1

Table 2.1: Expressions for K for proposed visual cues

center, with K, getting smaller as the distance from the image center increases. Also
note the effect of the focal length. As the focal length increases (assuming fixed image
size, or maximum values for y, and z,), the value of K, increases. This is equivalent
to the case of a telephoto lens, that subtends a relatively small field of view. This
would be like looking though a straw at the horizon; very little image motion results
from longitudinal motion, and a great deal results from pitch motion. With a very
small focal length (e.g., a wide-angle lense), K, decreases. This case would result in
much more overall image motion resulting from longitudinal motion, except for those
parts of the image that are insensitive to longitudinal motion. It can be seen that at
the very center of the image (y, = z, = 0), K, becomes infinite; this is because all of
the image motion results from pitch and none results from longitudinal motion.

The expressions for K, for each type of proposed cue are presented in Table 2.1.
The actual values of K for particular texture types will be considered in Chapters 3
and 4.

This chapter contained the derivation of visual cue models, transfer function mea-
surement methodologies, and characteristics of visual cues. The next two chapters
contain descriptions of two experiments performed to validate the models derived in

this chapter, and to show how to estimate the values of their constants.
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Chapter 3
Experiment 1

The previous chapter contained the derivation of two forms of the VCC model. The
primary purpose of this experiment was to determine if the VCC model could rep-
resent the input/output relationships of the human operator performing a manual
control task using a perspective display. In particular, which form of the model
(one-cue or two-cue) was superior? A second goal was to determine if systematic
variations in the task variables could produce systematic variations in the control
strategy and/or performance. To determine this, variations were introduced in both
the nature of the disturbances perturbing the system, and to the content of the per-
spective scenes. The purpose of testing with systematic variations was to facilitate
development of the model under a variety of conditions.

The data analysis of the experimental results includes both Analysis of Variance
(ANOVA) and individual modeling. The ANOVA was performed to assess the degree
to which variations in the task variables produced variations in the control strategy
and performance. The individual modeling consisted of fitting parameters of both
of the VCC model forms (one-cue and two-cue) to experimentally derived transfer
functions.

The results of this experiment will show that both forms of the VCC model pro-
vide good representations of the input/output characteristics of the operator in the
majority of cases. However, high variances in the transfer function measurement pre-

vented conclusive determination of which model form was superior (for this reason, a
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second experiment, Experiment 2, was developed to focus on this issue, as Chapter 4
will describe). The variations in the task variables did produce measurable effects in

the control strategy and performance.

A description of the experimental protocol is provided in Section 3.1. Section 3.2
contains the experimental results from both the ANOVA analyses and the individual

modeling. and Section 3.3 contains discussion of those results.

3.1 Protocol

3.1.1 Participants

Six participants were used. They were recruited from a contractor pool at Ames
Research Center. All were male flight instructors, with experience ranging from 270

to 620 total flight hours.

3.1.2 Apparatus

A simulation was developed on a Silicon Graphics Indigo IT Extreme. Control inputs
were supplied with the 3-axis joystick in a B&G Systems Flybox. The color monitor
had a 19-inch diagonal screen, with resolution of 1024 vertical and 1280 horizontal
pixels. Operators were seated approximately 20 inches from the display. This resulted
in approximately 30 vertical by 37.5 horizontal degrees of visual angle subtended by
the display. The simulation had a 33.3 Hz update rate (from a .03 second sampling
interval), and the monitor refreshed at a rate of 72 Hz noninterlaced. The joystick

information was updated at the simulation update rate of 33.3 Hz.

The dynamics of the vehicle were described in Section 2.1. The actual discrete
transfer functions used, as well as the disturbance dynamics, are presented in Sec-

tion D.1 of Appendix D.
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3.1.3 Scene

Modifications to the visual scene were done by applying different types of patterns
to a simulated ground plane; these pattern types are referred to as textures. In this
experiment, four textures were presented, shown in Figure 3.1. The texture types
were; 1) Grid (G), 2) Parallel (||), 3) Perpendicular (L), and 4) Line (L). All of the
textures featured a line on the ground plane, referred to as the baseline (perpendicular
to the ostensible direction of motion of the operator), located 3 eyeheights in front
of the operator. In the Grid texture. lines both perpendicular and parallel to the
direction of motion of the operator were present (this included the baseline). In the
Parallel texture, the parallel lines and the baseline were present. In the Perpendicular
texture, only the perpendicular lines were present (including the baseline). In the Line
texture, only the baseline was present. The lines perpendicular to the direction of
motion were spaced at 0.5 eyeheight intervals; the lines parallel were spaced at 0.78
eyeheight intervals.

All scenes were rendered with a 60-degree vertical field of view, which resulted
in a 75 degree horizontal field of view. This represents approximately a 2-to-1 ratio
between the field of view displayed and the actual viewing angle of the display. Al-
though significantly non-conformal, the large field of view is fairly consistent with the
large fields of view typically available on flight vehicles (particularly the horizontal
field of view). The operator of an unmanned aerospace vehicle (UAV) can be pre-

sented with a similar situation; the image from a caniera with a wide-angle lens can
be displayed on a monitor that actually fills a much smaller visual angle than the
visual angle subtended with the camera.

The ground plane was linearly shaded from light to dark from a position directly
under the operator to a distance of 15 eyeheights in front. The dark color was main-
tained from that location to the horizon. This was done to minimize the effects of
aliasing in the lines distant to the operator. As in one-dimensional signal processing,
aliasing in an image occurs when the frequency content of the image is higher than
the Nyquist frequency (half of the sampling frequency). Specifically, near the horizon,
the distance between individual lines becomes less than one pixel, which is a higher

spatial frequency than the display can support. In concrete terms, the aliasing makes
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Grid
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The four texture patterns used in Experiment 1.

Figure 3.1
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the lines in the vicinity of the horizon seem to flicker, and a particular line will move
up and down one pixel in a way that is not related to the motion. The distance of 15
eyeheights was chosen to correspond to the distance at which the visual angle sub-
tended between two lines perpendicular to the line of sight would correspond to less
than two pixels. The graphical rendering was done with no hardware anti-aliasing,
and the lines were all one pixel wide. There was also no depth cueing enabled. Thus,
the operator could not get any position information from the perspective thickening

of the lines as they grew closer, or from changes in contrast due to distance.

Visual-Cue Characteristics

As will be seen, the results of the experiment include the derivation of parameters
that are related to the characteristics of visual cues in the scene. Therefore, in order
to compare the measured values of the parameters with the available visual cues, it
is necessary to determine what the theoretical values of those parameters would be
for particular cues. Five potentially available cues were discussed in Section 2.5.3;
expressions for the value of K, were derived for each of these cues, shown in Table 2.1.
Examples of the visual cues were also shown graphically in Figure 2.11. Only two
of the visual cues proposed, Ay and \,, are a function of the scene features used to
derive the cue. For the four texture conditions used in this experiment, the available

ranges of K, are derived.

The cue A, is defined as thie absolute vertical displacement of a scene feature.
The fixed reference point that the displacement is measured relative to can be any
landmark fixed relative to the image. One of the most likely references would be
the bottom edge of the display; the example demonstrated in Figure 2.11 was the
displacement of the baseline (in the image) relative to the bottom of the display.

The expression (Equation 2.62) for K}, is:
K, = D% +1 (3.1)

Dy is the longitudinal displacement of a feature (the feature being used for the cue)
relative to the operator. For this task, the closest feature is the baseline, located 3

eyeheights in front of the operator. The subsequent lines are spaced at intervals of .5
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Texture
Cue || Grid | Line Parallel Perpendicular
Av || 210} 10 10 > 10
M. || 1 1 1 1
M 1 — 1 —
AAh 1 — 1 —
As >28| — [36,660r10 —

Table 3.1: Values of K for proposed visual cues in Experiment 1. These cues are
depicted visually in Figure 2.11. '

eyeheights, up to a distance of 15 eyeheights from the operator. Accounting for this,
the minimum obtainable value of K, would be 10. In the Grid and Perpendicular
textures, intermediate values of K would exist (K, = 13.25, 17.0, etc.). In the
Parallel and Line textures, only the baseline is available to base this visual cue on,
therefore K, = 10.

The other cue that varies as a function of scene features is A,. This cue was
defined as the component along a line of splay of the absolute displacement of a scene
feature. The expression (Equation 2.74) for K, is:
_ Dy + D5 +1

K, =2 ~7X_'
T D2 4 DY

(3.2)

Dy and Dy define the longitudinal and lateral position of the feature (relative to the
operator) used for the visual cue. Since the Perpendicular and Line textures do not
have any features that exhibit lateral movement, this cue is not available in these
textures. In the Grid texture, it can be shown that the minimum obtainable value of
K, is 2.8. In the Parallel texture, there are a limited number of features for which
this cue is available; specifically, the intersections of the baseline and the lines of
splay. For this texture, the minimum obtainable value for K, is 3.6.

Table 3.1 presents theoretically obtainable values of K for each of the visual
cue and texture combinations. It was discussed previously that the operator could
minimize the effect of the pitch-attitude disturbance by minimizing K when possible.

From this visual cue analysis, one would expect the operator to use one of the three
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cues that yield K, = 1 whenever possible. It should also be noted that in all of the
texture conditions, there is one cue available that yields K, = 1, namely Aa,. This
cue is potentially available, in all of the textures, through sensing of the distance

between the horizon and the baseline.

3.1.4 Task

As was previously described in Section 2.1, the objective was to maintain a constant
position in the presence of disturbances. The operator was verbally instructed to keep
the longitudinal position fixed at the position at the start of the trial (which was the
same for all trials). The operator was informed that he could control only longitu-
dinal position, and not pitch, and that both pitch and position would be subject to
disturbances. Operators were also instructed to develop their control strategies dur-
ing the training runs; once data runs were begun, they were instructed to maintain a

consistent control strategy for a particular texture.

3.1.5 Procedure

Each operator participated for one day. The experimental protocol consisted of a
block of training runs and two blocks of data runs. The data-run blocks were iden-

tical to each other except for the randomized phase angles used to initialize the

disturbances. In both the training and data blocks, six experimental conditions were

tested on each of the six operators; the conditions are enumerated below.
1. Grid, no pitch (G/0)
2. Line, no pitch (L/0)
3. Grid, with pitch (G/1)
4. Line, with pitch (L/1)
5. Parallel, with pitch (]|/1)
6. Perpendicular, with pitch (1 /1)
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Operator Condition

1 L/O [ G/1| I/T [ L/ [G/0] 1/1
L/1}jL/1]G/o|L/O]/1]G/1
G/1|L/0o||I/1 |G/O|L/1|L/1
G/o|L/11L/1|G/1]1]/1|L/O
I/t {L/0o|G/1|L/1]|L/1}G/O
/1| G/O|L/1 | |/1|G/1]|L/0

O] O ] Wl o

Table 3.2: Experiment 1 presentation order by operator. The first character denotes
the texture type; the second character denotes if the pitch disturbance was present
(1) or absent (0).

Each operator was given a different presentation order for the conditions. In the
training block, operators were given six sequential training runs in each of the six
conditions, for a total of 36 training runs. In the data blocks, the operator was
given one training run and then three data runs for each condition. The order of

presentation (shown in Table 3.2) remained fixed for the training run and both data

runs.

Each data run lasted a total of 4 minutes, 10 seconds. Training runs lasted 55
seconds. Both data and training runs were initiated by the operator by using the
mouse button. During the first five seconds, there was no activity in the display, and
an auditory signal was given at one-second intervals. For the next five seconds, the
display and control became active, and the disturbances ramped linearly from zero
to full intensity. The simulation proceeded with full-strength disturbances for the
remaining time (4 minutes for data runs, 45 seconds for training runs). Following
this, the operators received feedback after both training and data runs on their per-
formance; the feedback consisted of a single value derived by summing the root mean
square (rms) velocity (in eyeheights/sec) and rms longitudinal position (in eyeheights)

from the training run.
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3.1.6 Experiment Design

The design consists of two nested factorials: a 6 x 2 x 2 with repetitions, textures
(Grid and Line), and pitch disturbance (with and without) as factors, and a 6 x
4 with repetitions and texture types (Grid, Parallel, Perpendicular, and Line) as
factors (pitch disturbance was always present). The dependent variables included:
the percent of control (§) power correlated with pitch disturbance (¢); percent of
control power correlated with longitudinal disturbance (u); longitudinal velocity rms;
and longitudinal position rms. To simplify later discussion, the following symbols are

introduced to identify these four dependent variables:

Psg: % of control (0) power correlated with the pitch disturbance (¢)
P, % of control (&) power correlated with the longitudinal disturbance (u)
RMS,: longitudinal velocity rms

RMS,: longitudinal position rms

3.2 Results

3.2.1 Analysis of Variance (ANOVA)

An Analysis of Variance (ANOVA) was conducted for each of the two factorials; 1)
a 2x2 factorial analysis with texture (Grid vs Line) and pitch disturbance (preseut
vs absent) as factors'; and 2) a one-way ANOVA examining the effects of the four
textures with the pitch disturbance present. The ANOVA assesses the probability
that observed differences in dependent measures across conditions are due to random
variation. This is done via a comparison of differences between conditions to vari-
ability within conditions. Measuring performance for all conditions in a single group

of participants (i.e., a within-subject design) is generally more powerful than having

'Factor is another name for independent variable. The term “n x m” factorial denotes a design in
which two factors are varied; n levels within the first factor, and m levels within the second factor.
In this 2 x 2 factorial, two pitch disturbance levels (present and absent), and two scene textures
(Grid and Line) were considered. Repetition is not considered a factor of theoretical interest in this
study. Rather. multiple samples were taken for each pitch disturbance X scene texture condition to
provide additional statistical power.
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Symbol Meaning Probability of Chance Occurrance
+ statistically significant p < 0.05
+ marginally significant 0.06 < p <0.10
0 not statistically significant 0.10<p

Table 3.3: Summary of statistical significance terminology

different participants in each condition (i.e., a between-subjects design) since the im-
pact of individual differences is mitigated. Differences that would occur by chance less
than 5% of the time are considered statistically significant (i.e., p < 0.05). An effect

or interaction is considered to be marginal if the probability of it occurring by chance

is between 5% and 10%. Rather than present the numerical values for each analysis
factor, the results are summarized in tables, in which “+4” represents a probability of
chance occurrence less than 5% (statistically significant),“+” is a probability between
5% and 10% (marginal), and “0” represents 10% or greater probability of chance
occurrence (i.e., a null or nonsignificant finding). These relationships are shown in

Table 3.3.

The dependent measures examined in both factorial analyses were: the percent of
control power correlated with the pitch disturbance (Psg); percent of control power
correlated with the longitudinal disturbance (Fj,); longitudinal velocity rms (RMS,);

and longitudinal position rms (RMS,).
The 2x2 ANOVA results comparing the effects of texture (Grid vs Line) and

pitch disturbance (present vs absent) are shown in Table 3.4 and Figure 3.2. These
results indicate the pitch disturbance has a much greater effect when the operator
is using the Line texture than when he is using the Grid. PFjs without the pitch
disturbance present simply represents the remnant that is present at the frequencies
that are later used to inject the pitch disturbance. When the disturbance is present,
Psg barely increases with the Grid texture, but increases significantly with the Line
texture. This increase in Pjy is accompanied by almost a one-to-one drop in Fj,.
Not surprisingly, both the outcome variables RMS, and RMS, are increased with the

Line texture when the pitch disturbance is present; this is an expected outcome from
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Factor
Measurement || Pitch disturbance | Texture | Dist/Text Interaction
Psg + + +
P(S.T 0 + +
RMS, + + +
RMS, + 0 +

Table 3.4: Statistical significance for the 2x2 Analysis of Variance (textures x pitch
disturbance) from Experiment 1. “4” indicates statistical significance, “+” indicates
marginal significance, and “0” indicates lack of statistical significance.

injecting a disturbance into the control.

The results of the one-way ANOVA, examining the effect of texture alone (pitch
disturbance present), are presented in Table 3.5 and Figure 3.3. In this case, the
texture had a significant effect on Pjsy; it increased in the order of Grid, Parallel,
Perpendicular, and Line textures. Ps, had a corresponding drop, similar to that
observed in the 2 x 2 ANOVA. RMS; and RMS, increased from the Grid to the Line
texture, although these measurements were nearly identical for the Perpendicular
and Parallel textures, even though the Paralle] texture is associated with a lower

amount of pitch activity in the control. The reason no effect is observed in RMS, and

RMS, is probably because the operators occasionally “lost” the baseline reference
by moving too far forward. When this happened with the Parallel texture, there
were no positional or motion cues available, and the operator would have to adopt
an open-loop control strategy to move back enough to engage the reference. With
the Perpendicular texture, the operator would at least have some motion cues from
the other lines, and could reengage the baseline reference more easily. This tendency
probably negated any favorable effect on RMS, or RMS, due to the reduced pitch

disturbance feedthrough with the Parallel texture.

The numerical values of the means and standard errors for both analyses, as
well as the actual values used to determine statistical significance, are contained in

Section D.2 of Appendix D.
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Figure 3.2: Analysis of Variance (ANOVA) results for effect of texture and pitch
disturbance in Experiment 1. Operating with the cue gleaned from the Grid texture
is significantly better than with the Line-texture cue when there is an uncontrolled
pitch motion present. (Otherwise, the Line-texture cue is probably about as good
as the Grid-texture cue.) That is, getting higher rms errors and using more control
power to respond to the pitch disturbance both indicate poorer performance.
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Figure 3.3: Analysis of Variance (ANOVA) results for effect of texture with pitch
disturbance present in Experiment 1. The Parallel texture is associated with better
pitch disturbance rejection (lower Psy) than the Perpendicular texture, but not as
good as the Grid. The lack of effect on the outcome variables, RMS, and RMS,
is likely due to a tendancy for operators to “lose” usable visual reference with the
Parallel texture, when the one line in the foreground would disappear out of sight
when the operator moved too far forward.
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Factor
Measurement | Texture
Pso +
Pz +
RMS, +
RMS, +

Table 3.5: Statistical significance for the one-way Analysis of Variance (effect of
texture) from Experiment 1. The “+4’s” indicates that the date about the effect of
texture is statistically significant for all of these dependent measures.

3.2.2 Individual Models

The spectral density measurements Y,J and Yy (defined in Equations 2.37 and 2.38,
respectively) were derived for each operator and condition using the techniques de-
scribed in [62], also summarized in Appendix B. Yp is the ratio between the control
activity ¢ and longitudinal position z (the portion of it that is linearly correlated with
the longitudinal acceleration disturbance); its units are stick displacement/eyeheight.
Yy is the ratio between the control activity and pitch attitude # (the portion which
is linearly correlated with the pitch rate disturbance); it is expressed in units of stick
displacement/rad. These ratios are complex relationships which describe the gain
and phase relationships between the input signals (z and 6) to the operator and his
control output (4). Each operator completed six data runs in each condition?. The
spectral density measurements were based on the five time histories (of six taken)
that exhibited the lowest velocity and position rms. This was done to eliminate those
data runs in which the operators occasionally lost visual references. Although the-
oretically possible for one data run to have the highest velocity rms and another to
have the highest position rms, this never occurred in practice; in every case, the data

run with the highest position rms was also associated with the highest velocity rms.

2The cases in which the pitch disturbance is not present were not included in the individual
model fitting. The lack of a pitch disturbance makes it impossible to identify which visual cue is
being used. This is because the measurement Y, is used to derive the parameters (K,, Kg, and
K.,) which are related to the perspective display and visual cue selection. The term *“all conditions”
should be taken to mean those conditions in which the pitch disturbance was present.
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The relationships between the model parameters and the measuremernts are de-
rived in Equations 2.39 through 2.43. In practice, it can be quite difficult to identify
the model parameters that best correspond to frequency-domain measurements. Sev-
eral approaches are possible. In one approach, the parameters of Y),, Yy, and Yj, that
provide best fits to the measurements )A/p and Y, can be determined through some
type of parameter optimization. This is an iterative, numerical search of some type,
and in this case would involve the determination of four or five parameters to fit 20
data points. The time required to apply this to all of the measurements (six operators
in four conditions yielded 24 individual sets of parameters to be identified) became
prohibitive,

It is also possible to find parameters of a discrete transfer function that best fit
the time-sampled data using non-iterative methods: however, this technique tends
to fit only the largest-magnitude portions of the response, neglecting the smaller-
magnitude responses. Since the magnitude of different frequency components can vary
appreciably, this approach does not yield very good correspondence with frequency-
domain measurements.

A third approach was developed, in which a discrete transfer function (DTF)
identification process was modified to provide a fit that corresponds closely to the
frequency-domain fit. This technique is described in detail in Appendix C. This

approach was combined with parameter optimization to provide parameter estimates

for the measurements available.

The model-fitting procedure used is as follows:

1. The parameters of Y, that best fit the measurement Y, were determined. The
form of Y, (e.g. order of numerator and denominator) was chosen to provide
a reasonable fit to Yp with the minimum number of parameters. The modified
DTF identification process described in Section C.1 of Appendix C was used

for this parameter identification.
2. Using the identified parameters of Y}:

(a) For the one-cue model: the free parameter of Yy (K,) to best fit the

measurement Yy was determined.
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(b) For the two-cue model: the free parameters of Yy (K3 and K.,) to best fit

the measurement Yy were determined.

The grid search technique described in Section C.2 of Appendix C was used for

the identification of these parameters.

The reason for using the two different techniques is related to the number of
parameters to be identified, as well as the variances of the measurements involved.
The modified DTF technique involves a weighted least-squares solution, with the
inverse of the measurement magnitude partially determining the weights. When the
data exhibits large variances, some of the measurements can have a disproportionate

effect on the parameters. However, the level of complexity of the solution increases

very slightly with increasing numbers of parameters. It is ideally suited to cases with
low variances, in which the number of parameters make numerical solution tec.hniques
particularly cumbersome.

The measurement }Afp typically had low variances associated with it; the standard
errors for all conditions, operators, and frequency measurements are shown in Fig-
ure 3.4. The methodology for deriving the standard errors is described in Section B.2
of Appendix B. For the data generated in this experiment, the model Y}, had three free
parameters (this will be described in more detail below). These two factors (low stan-
dard errors and larger number of parameters) made the modified DTF identification
method ideal for this data set.

The measurement Yg, which is associated with one or two parameters, had rel-
atively high standard errors (Figure 3.5). The high variances, and low number of
parameters to be identified, justified use of the slower parameter-optimization tech-
niques for fitting to the Y, measurement.

The actual numerical values for all of the identified parameters, for all operators
and conditions, are presented in Section D.3 of Appendix D. In addition to the model
parameters, a fit quality index, J, is reported to help assess the quality of the fit for
each condition; it is defined in Equation C.10. Lower values of J indicate better fits.
The terms J,, Jg1, and Jyo refer to the fit quality indices for the models Y, Yp;, and

Yoo, Tespectively. As this data is quite extensive, only a subset will be presented in
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Figure 3.4: Standard error estimates of )A/p, as a function of input frequency, for
all operators and conditions in Experiment 1. The standard error is related to the
standard deviation for this data by se = o/v/5 (the measurements are ensemble
averages from five repetitions). The technique used to determine the standard error
is described in Section B.2. A value of 3 dB is commonly used in manual control
research as the cutoff point for the maximum acceptable standard error; a dashed
line is shown as a reference at this 3 dB point.
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cutoff point for the maximum acceptable standard error; a dashed line is shown as a

reference at this 3 dB point.
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figure form in the body of this chapter. What follows are the most relevant results of
the model fitting to the measurements Y’,, and Yj.
As suggested by Equation 2.13, the simplest form of Y, that consistently fit the

data was:

Yy(s) = Kye (s + wi) (3.3)

The measurements from the highest two frequencies (at approximately 8 and 13
rad/sec) were not used for the parameter fitting. Initial attempts at parameter fitting
revealed a systematic error in the fit at these frequencies. Closer examination of
the data revealed that, at these two frequencies, the culprit was a pixel-jumping
phenomenon: the effect of the longitudinal position disturbance on the visual cues was
extremely small (less than one pixel peak-to-peak). The effect of the pitch disturbance
at these frequencies was still quite noticeable, approximately five pixels peak-to-peak.
In the other frequency ranges, the effects of both disturbances were edsily observable.
Therefore, the parameter fitting was constrained to the first ten frequency points. The
actual plots of the measurements and model fits, for all conditions and operators. are
contained in Figures D.1 through D.24 in Section D.4 of Appendix D.

The derived values for K, 7, and wy,, as well as the index of fit quality J,, are
presented in Table D.8. Overall, there appeared to be very little if any systematic
variation in these parameters due to the manipulation in texture. However, systematic
variations are not easily seen in these parameters because of the way in which the
parameters interact with each other. In manual control, it is common practice to
examine the characteristics of the product of the operator compensation (Y,) and
the controlled element dynamics (Y;). In particular, the variables of interest are
the crossover frequency w. and phase margin ¢,,. Figure 3.6 shows the open-loop
frequency response of the nominal Crossover Model (Equation 1.1) with the crossover
frequency and the phase margin identified. The crossover frequency w. and phase

margin ¢,, are defined as follows:

Yo(jwe)Ye(jwe)] = 1 (3.4)
180° + £(Y,(jwe)Ye(jwe)) = o (3.5)

The crossover frequency is the frequency at which the magnitude of the open-loop
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transfer function is unity. The phase margin is the amount of phase in excess of ~-180
degrees of the open-loop transfer function evaluated at the crossover frequency. The
crossover frequency determines the bandwidth of the system, or the frequency above
which tracking performance starts to degrade. The phase margin is a measure of the
stability of the closed-loop system. When the phase margin approaches zero, slight
uncertainties in the plant dynamics or variations in loop gain can create unstable
closed-loop characteristics.

Crossover frequency and phase margin were derived for all operators and condi-
tions; they are presented in Table D.9 and Figure 3.7. As can be readily seen, there
is far more individual difference between operators than between texture conditions.
There does appear to be some systematic variation in the crossover frequellcy" with
texture type, although it is still small in relation to the individual differences. Gen-
erally, for a particular operator, the highest crossover frequencies were observed with
the Grid texture, and the lowest with the Line texture. The higher crossover fre-
quency implies that the operator is responding over an effectively higher bandwidth
with the Grid texture than the Line texture: this is one likely cause of the improved
performance shown in Figure 3.3. The qualitative difference between the displays is
that the Grid texture has far more available visual cues than the Line texture; the
Parallel and Perpendicular textures have more cues than the Line, but less than the

Grid. The level of redundancy of available cue sources in the different textures could

be responsible for the observed performance effects. Unlike the crossover frequency,
the phase margin does not appear to have any systematic variation with texture
condition®, implying that the stability of the closed-loop system was not affected by
texture type.

The amount of lead developed by the operators, defined by 1/wy, also seemed to
vary as a function of texture. This is shown in Figure 3.9. The Grid and Parallel
textures were associated with the lowest values of wy (most lead generation) for most
operators, and the Line texture had the highest values.

The function Y}, is related to how the operator responds to the relevant longitudinal

3Although it does vary sharply and conformally with w, achieved. i.e.. with the aggressiveness of
the individual operator. See Figure 3.8.
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Most of the operators using the Grid and Parallel textures demonstrate the ability
to generate more lead in their control strategy (incorporate more velocity feedback)
than when using the Perpendicular or Line textures.

position variable x, and by itself, does nothing to determine how visual cues were used.
The operator response to the irrelevant variable ¢, modeled by Yy, or Yjo. relates to
the visual cue being used. To review, Y, is the visual-cue model based upon one cue
for both motion and position sensing; it is defined through the previously identified
parameters of Y,, as well as the additional parameter K,. Yjo is the visual-cue
model incorporating one cue for motion, and another cue for position. This model is
defined by the parameters of Y, and the parameters K3 (for motion sensing) and A,
(for position sensing). The parameters of Y, are completely determined through the
spectral density measurement YP; therefore, the only degrees of freedom remaining to
fit the spectral density measurement Yy are K, for the one-cue model Yy, and g

and K, for the two-cue model Y.

The parameters K,, Kz and K., were chosen as described previously and in Ap-
pendix C, to fit the measurement Yp. The fit quality index Jy; and parameter K, for
all operators and conditions, are contained in Table D.10. Jpo, Jgo/Jg1, K3, and K,
for all operators and conditions are contained in Table D.11. The identified parame-
ters of K,, K3 and K, are shown in Figure 3.10. The theoretical values expected for

the visual cues analyzed in Section 2.5 are also included in this figure. Note that the
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identified values of the parameters generally fall within the expected range of values

from the theoretical visual cue analysis (Table 3.1).

The one-cue and two-cue models are compared in two ways. The first way is to
determine how similar the parameters of the two-cue model are to the parameter of the
one-cue model. It was previously noted that the two-cue model becomes equivalent
to the one-cue model when the parameters Kg and K, are identical to each other, or
when K3 = K. Figure 3.11 shows the ratio K3/ K, for all operators and conditions.
In many cases, particularly with the Grid and Parallel textures, operators appear to
be using two cues (since the ratio is well below unity). The operators using the Line
texture, however, appear to be using one cue.

This ratio K3/ K., alone does not conclusively indicate that the operator is using
two cue sources. The one-cue model has one free parameter, while the two-cue model
has two free parameters. A model-fitting procedure will always “use” a free parameter
when available to achieve the best fit, even though it could be fitting a relatively high-
variance datum. In addition to checking the ratio K3/ K., it also is prudent to examine
how much the additional parameter improved the quality of the fit. Figure 3.12 shows
the ratio of the fit-quality parameters Jgo and Jy;. It is difficult to quantify a number
for this ratio that corresponds to the case when the one-cue strategy is adequate to
describe the data, but some estimates can be made. There are twenty data points
(ten complex measurements) being fit. If we assume that the additional parameter on
average will provide a one-in-twenty improvement to the fit, an average improvement
in the performance index of 5% might be expected. Therefore, if the one-cue model
is adequate, one might still expect that, on average, the ratio of Jyo/Js; would be
approximately .95. A confidence interval of three times this, or in this case 15%
improvement, might be used to determine when the two-cue model is clearly more
representative. These intervals are included in Figure 3.12; as can be seen, in many
cases, particularly for the Parallel and Grid textures, the ratio is at and below 0.85.
Many other cases fall between the two intervals. While this data does not conclusively
support the two-cue model, there is evidence that the two-cue model is required to
adequately describe several of the cases. The fact that in many cases, the one-cue

model appears to adequately describe the data, does not prove that a one-cue strategy
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Figure 3.10: Identified parameters K, (left), K3 (middle), and K, (right) for all
operators and conditions in Experiment 1. K, is the parameter in the one-cue model
that corresponds to the sensitivity of the visual cue used for both position and motion:
refer to Figure 2.6 and Equation 2.42. Kp is the parameter in the two-cue model
for the sensitivity of the visual cue used for motion sensing; K., is the parameter
for the position visual cue. Refer to Figure 2.7 and Equation 2.43 for the two-
cue model. Dashed lines on the plot (and labeled in the right margin) indicate the
predicted values of these parameters for the potential visual cues examined (refer to
Table 3.1). Examples of the visual cues are shown in Figure 2.11. To review, A,
refers to displacements or motions along the lines of splay, A, and Aap are horizontal
components of motion or displacement of features (absolute and relative respectively),
and )\, and )\, are vertical components.
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Figure 3.11: The ratio K/K., from Experiment 1 for all operators and conditions.
K and K., are the motion and position visual cue sensitivities, respectively, in the
two-cue model. The two-cue model becomes equivalent to the one-cue model (in
which one visual cue is used for both position and motion sensing) when the ratio
K3/ K., is unity. The data is strongly supportive of the two-cue model, rather than
the one-cue model, when this ratio is well above or below unity, as it is, except for
the pure line texture.
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Figure 3.12: The ratio of the fit quality indices Jpa/Jg;, for the two-cue versus one-
cue model fits, for all operators and conditions for Experiment 1. Lower values of J
indicate a better fit. In those instances when the ratio Jpa/Jg; is significantly below
unity, the two-cue model provides a significantly better fit to the data than the one-
cue model. The dotted line at 0.95 shows the level of improvement in the ratio that
might be expected from chance with the addition of one parameter to the model
(going from one-cue to two-cue); the dashed line at 0.85 shows three times this level.

is being used; it is also possible that the variances prevent discrimination of the two
models. The structural difference between the two models is a lag-lead element in the
vicinity of the lead break frequency wy. This lag-lead network has the form:

s+ ([\',7/]\’3)(4)L
S+ wp,

LL(s) = (3.6)

For this data set, the values of wy are in the range of 0.2 to 1.0 rad/sec, while
the ratio of Kg/K, tends to be in the vicinity of 0.5 to 1.0. This would put the
frequency range in which one would “see” the effects of the lag-lead network to be
in the range of 0.2 to 2.0 rad/sec, with most of the cases falling into the range of
0.5 to 1.0 rad/sec. As was pointed out before, the data in this area tended to have
high variances (see Figure 3.5). Since the fitting procedure as well as the fit quality
index J uses the inverse of variance, the fitting of high-variance data can create a very
modest improvement in Jgy relative to Jp;. Although the fitting procedure identifies
values of K3 and A, that are quite different, the improved fit has very little effect on

the fit-quality index due to the high variances of the points that were improved.
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It can be seen from referring to Figure 3.10 that the values derived for K, tended
to be quite close to K, rather than being some median value between Kz and K,.
This is a predictable result for two reasons. The first reason is that the majority of
the data points are above the frequency region in which the lag-lead network exerts
it’s influence; above this frequency, Kz is the parameter that determines the fit. Since
more than half of the points are more strongly influenced by K3, the one-cue fit would
tend to identify values of K, closer to Kz than K,. The second factor is that the
fit was influenced by the variances; the frequency region above the influence of the
lag-lead network was typified by lower variances than the data within the frequency
region of the lag-lead network. This would also tend to favor identification of values

of K, that are closer to K than K.

3.3 Discussion

The two objectives of this experiment were: 1) to determine if the operator’s strategy
could be modeled with either form of the VCC model, and 2) to determine if mea-
surable differences in the operator strategies would result from manipulation of the
perspective scene elements.

The second objective has been demonstrated with the ANOVA analysis results.
The manipulation of the scene elements produced statistically significant effects on
the control activity (percent of control correlated with pitch disturbance and with
longitudinal disturbance), as well as the position and velocity rms.

The first objective has been partially met; although the models show good corre-
spondence with the data in many cases, it is impossible to determine from this data
set whether the two-cue model is more representative than the one-cue model. In
several cases, the two-cue model is clearly superior, but in the majority of the cases
the improvement in the fit achieved with the two-cue model is not appreciably better
than what would be expected from chance. A factor that could be responsible for the
difficulty in differentiating the acceptability of the models was the high variances as-
sociated with the Yy measurement. This will be addressed in Experiment 2, described

in the next chapter.
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An encouraging result from the individual modeling was that the parameters de-
rived for the visual-cue sensitivities (i, K3, Iv’,) generally fell into the range expected
from the theoretical analysis of the visual cues. Specifically, many operators achieved
values of K, and A’z that were close to the predicted value for the cue related to the
line of splay (A,). This would bec achieved if the operator were capable of attend-
ing to displacement or motion of a particular feature along the lines of splay at the
lower, outer corners of the display. Additionally, the values of K, achieved for many
operators, particularly with the Perpendicular and Line textures, were close to the
expected value if they used the line closest to the operator as a position reference
(A\). This lends support to the validity of the modeling approach. It also suggests
the possibility that this methodology could support the identification of particular
visual cues being used for a task. This is feasible because the identified parameters
K., K, and K., can be directly related to the visual cue or cues being used, through
the model of perspective projection and visual cue selection.

The potential for visual cue identification suggested additional changes in Exper-
iment 2. A fundamental characteristic differentiates the Grid and Parallel textures
from the Perpendicular and Line textures. The Grid and Parallel textures have indi-
vidual points (from the grid intersections) that can create arbitrary two-dimensional
motion in the image. They also have lines of splay. It was realized after-the-fact that
this experimental treatment did not allow any differentiation between the effects of
lines of splay, and individual points. This is potentially an important factor, since
one of the theoretical visual cues was based on the hypothesis that motion directed
along a line of splay was being detected. Additionally, the identified parameters for
K in several cases were quite close to the theoretical predictions for using this cue
(A\s). Experiment 2, then, will be seen to include modifications to allow differentiation

between the contribution of lines of splay and individual points.
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Chapter 4
Experiment 2

The results of Experiment 1 demonstrated that:

1. The input/output characteristics could be accurately represented with either

form of the VCC model (both the one-cue and two-cue).

2. Manipulation of the task variables could produce measurable effects on the

control strategy and performance.

What the experiment failed to demonstrate was which form of VCC model, one-cue or
two-cue, was a superior representation of the task. This failure could be attributed to

high variances in the measurements of one of the transfer functions, Yy (the control

output of the operator due to pitch attitude). Another factor which could not be
discriminated from the Experiment 1 results was the potential effects of lines of splay
in the display versus individual points.

These factors and others were addressed in Experiment 2. Efforts were made to
reduce the measurement variance. Individual points were added to some of the per-
spective scene textures, to differentiate the effects of the lines of splay and individual
points. This experiment also provided an opportunity to rectify some inadvertent er-
rors that had occurred in Experiment 1. The uneven lateral and longitudinal spacing
of the grid lines in Experiment 1 was the result of a coding error; this was corrected
in Experiment 2. Another problem addressed in Experiment 2 was the unequal effect

of the longitudinal and pitch disturbances at the highest frequencies.
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The goal of Experiment 2 was to:

1. Determine which form of the VCC model, the one-cue or two-cue, was most

representative of the operator’s control strategy.

2. Determine what effect, if any, lines of splay in the display have on the control

strategy.

3. Investigate the potential of the model to provide a methodology for visual cue

identification.

In summary, Experiment 2 duplicated much of the Experiment 1 design, with the

changes and modifications described above. The results will show that the two-cue

model is necessary to represent the task for nearly all of the conditions tested. They
will also show that the presence of lines of splay have a slight, but statistically signif-
icant, effect on the control activity and the velocity rms. Conditions with the lines
of splay were associated with control power with more correlation to the longitudinal
disturbance, and less correlation with the pitch disturbance, than those conditions
without lines of splay. The lines of splay were also associated with lower levels of
velocity rms. The model appears to provide a preliminary basis for visual cue identi-
fication; in many cases the parameters identified in the models corresponded closely
to the available visual cues.

A description of the experimental protocol for Experiment 2 is provided in Sec-
tion 4.1. Section 4.2 contains the experimental results from both the ANOVA analyses

and the individual modeling, and Section 4.3 contains discussion of those results.

4.1 Protocol

4.1.1 Participants

Ten participants were used. They were recruited from a contractor pool at Ames
Research Center. All were male general aviation pilots, with experience ranging from

135 to 1600 total flight hours. The study design required a total of eight participants;
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the data from two of the ten participants were not included in the data analysis
of this study. One of these participants was dropped from analysis because he had
participated in Experiment 1. Another was replaced when e was unable to comply
with the test instructions (this is described further in Section 4.2.2). None of the
eight participants used for the data analysis presented in this chapter participated in

Experiment 1.

4.1.2 Apparatus

A different apparatus was used in Experiment 2 than had been used in Experiment 1.
The simulation was hosted on a different computer, a Silicon Graphics Octane. The
Octane offered better update rates and a potential for more complex graphics than
the original host computer. On this new platform, the simulation updated at the
monitor refresh rate of 72 Hz, increased from the previous update rate of 33.3 Hz. A
new joystick was also employed on this apparatus. In Experiment 1. the operators
used a device called a Flybox, which is a device holding not only the joystick, but also
buttons and throttle-type levers. Operators were required to hold the flybox on their
lap in the first experiment. For this experiment, a B&G Systems JF3 3-axis joystick
was mounted onto the table holding the computer and monitor. This new apparatus
was much more comfortable to use than the Experiment 1 apparatus, particularly for
long-duration runs. The joystick inputs were collected at the simulation update rate
of 72 Hz.

A different monitor was used in Experiment 2, but it was the same size and at the
same position relative to the operator. As in Experiment 1, the color monitor had a
21-inch diagonal screen, with resolution of 1024 vertical and 1280 horizontal pixels.
Operators were seated approximately 20 inches from the display. This resulted in
approximately 30 vertical by 37.5 horizontal degrees of visual angle subtended by the
display.

The dynamics of the vehicle were described in Section 2.1. The actual discrete
transfer functions used, as well as the disturbance dynamics, are presented in Sec-

tion E.1 of Appendix E.
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4.1.3 Scene

The textures used in this task are shown in Figure 4.1. The basic four ground texture
types used in Experiment 1 were used in Experiment 2, combined with random place-
ments of dots. The vertical and horizontal grid spacings were set to 0.5 eyeheights
each. The dots were uniformly distributed, at the same average density of the grid
intersections (i.e. 4 per square eyeheight).

As was done in Experiment 1, the ground plane was linearly shaded from light
to dark from a position directly under the operator to a distance of 15 eyeheights
in front. The dark color was maintained from that location to the horizon. The
graphical rendering was done with no anti-aliasing, and the lines were all one-pixel

wide. The points in the random dot fields were square, 3 pixels on a side. There

was also no depth cueing enabled. Thus, the operator could not get any position
information from the perspective thickening of the lines as they grew closer, or from
changes in contrast due to distance. The dots also did not change in size due to

distance.

Visual-Cue Characteristics

As was done in Experiment 1, the theoretical values of the visual cue parameters
were derived for each texture and dot combination tested. The analysis of visual-cue
characteristics is identical to that done for Experiment 1, described in Section 3.1.3.

Differences relative to the Experiment 1 analysis are as follows:

1. The decreased horizontal spacing of the lines of splay result in slightly lower
obtainable values for A, in both the Grid and Parallel] textures in than Experi-

ment 1.

2. The dots are assumed to be, on average, optimally placed to allow best possible
cueing. This means, for example, that the minimum obtainable value for Ky
is assumed for all of the conditions with dots (even though in some particular

cases this might not be true due to the random placements)
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Figure 4.1: The eight texture and dot combinations used in Experiment 2. The top
four textures are without dots; the bottom four textures are with dots.
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Texture
Without Dots With Dots

Cue || Grid | Line | Para | Perp || Grid | Line | Para | Perp
Ay |l =210 | 10 10 | 2103 >10| >10 >10] >10
N 1 1 1 1 1 1 1 1
I 1 — 1 — T 1 1 1
an |1 — 1 — 1 1 1 1
As | >26 — | >228] — [>226(>26]>26|2>26

Table 4.1: Values of K for proposed visual cues in Experiment 2. These cues are
depicted visually in Figure 2.11.

The obtainable values for each texture and dot combination of the five potential visual -

cues is shown in Table 4.1

4.1.4 Task

The task objectives were identical to those of the Experiment 1 task, although the
disturbance characteristics were modified. In order to better standardize task perfor-
mance, written instructions were provided to the participants. The written instruc-

tions are shown in Section E.2 of Appendix E.

4.1.5 Procedure

Each operator participated for a total of three days (compared to one day in Exper-
iment 1). On the first day, the operator received training runs in each of the eight
conditions. If the average of the operators top five scores! (of eight) in all conditions
was 1.4 or less, they completed the remaining test protocol which consisted of two
days of data runs. The conditions on each of the days were identical, with the ex-
ception of the randomized phase angles of the disturbance input components and dot
patterns. The data runs were broken into two days to allow an acceptable total time

on task; completing the data runs in one day would have required the operator to

IThe score was the summation of the position and velocity rms over the duration of the run.
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Operator Condition

1 G/— | W/ | L/ = L) /=] G/t |L/— ] 1/
/=1 G/ |L/— | L/ |G/— | )/ | L/— ]| L/:
L/ = L | G/=1 W L=} L) /=] G/
L= | L) (W= G/ | L/ —| L/ | G/—| |/
G/ W= L/ [ L/— ) W/ G/ = L) | L/~
W: |G/ —| L/ | L/ = G/ | I/—] L/ | L/—
L/ JL/— 1 G/ (W= L/ (L= 1 W/ |G/~
L (/= W |G/ =] L/ U/ —] G/t | ll/—

OO ~I O] U ]| 2| DO

Table 4.2: Experiment 2 presentation order by operator. The first character in the
condition (G, ||, L, or L) designates the type of line texture (Grid, Parallel, Perpen-
dicular, or Line). The second character, — or :, designates whether dots are absent
(—) or present (:).

stay for approximately nine hours.

The experimental protocol consisted of a block of training runs and two blocks
of data runs. The data-run blocks were identical to each other except for the ran-
domized phase angles and dot patterns. In both the training and data blocks, eight
experimental conditions were tested on each of the eight operators. The conditions
consisted of the four textures (Grid, Parallel, Perpendicular, and Line), each with
dots present or absent.

Each operator was given a different presentation order for the conditions. In the
training block, operators were given eight sequential training runs in each of the eight
conditions, for a total of 64 training runs. In the data blocks, the operator was given
one training run and then four data runs for each condition. For each operator, the
order of presentation (shown in Table 4.2) was identical for the training run and both
data runs.

Each data run lasted a total of 4 minutes, 5 seconds. Training runs lasted 60
seconds. Both data and training runs were initiated by the operator by pressing a
trigger switch on the joystick. During the first five seconds, the disturbances ramped
linearly from zero to full intensity. The simulation proceeded with full-strength dis-

turbances for the remaining time (4 minutes for data runs, 55 seconds for training
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runs). Following this, the operators received feedback after both training and data
runs on their performance; the feedback consisted of a single value derived by sum-
ming the rms velocity and rms position from the run (expressed in eyeheights/sec

and eyeheights, respectively).

4.1.6 Experiment Design

The design consists of one factorial, 8 x 4 x 2 with repetitions, line textures (Grid,
Parallel, Perpendicular, and Line), and dots (with and without) as factors. The de-
pendent variables included percent control power correlated with pitch disturbance
(Psg), percent control power correlated with longitudinal disturbance (Fj,), rms ve-

locity (RMS;), and rms position error (RMS;).

4.2 Results

4.2.1 Analysis of Variance (ANOVA)

A 4 x 2 (texture x dots) within subjects Analysis of Variance (ANOVA) was con-
ducted. The same variables used in Experiment 1 were considered: Pjsy, Ps,, RMS,,
and RMS,. The results are shown in Figure 4.2, and the statistical significance of each
factor and interaction is summarized in Table 4.3. The results without the dots are
quite similar to those in Experiment 1, as would be expected. With the dots present,
the effect of texture on all of the outcome variables was significantly reduced. The
Grid, Parallel, and Perpendicular textures with the dots all exhibited similar values
of Ps,, RMS;, and RMS,. Only the Line texture appears to be significantly different,
and even that effect is much less than that observed without the dots. With the dots
present, there appears to be a slight difference in Psy between textures with lines of
splay (Grid and Parallel) and those without (Line and Perpendicular).

One of the purposes for adding dots to the ground texture patterns in Experi-
ment 2 was to help differentiate the contribution of lines of splay from that of indi-
vidual points. An Analysis of Variance was conducted between two particular texture

conditions; the parallel texture with dots, and the line texture with dots. The results
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Figure 4.2: Analysis of Variance (ANOVA) results for effect of texture and dots in
Experiment 2. The effects on the outcome variables from the differences in texture
was generally much less when the dots were present than when they were not.
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Figure 4.3: Analysis of Variance (ANOVA) results for effect of lines of splay in Ex-
periment 2. Dots were present in all of the conditions included in this analysis. The
splay-present condition consisted parallel texture with dots; the splay-absent con-
dition consisted of the line texture with dots. The effect of the lines of splay on
the position rms was not statistically significant; the effects on the other outcome
variables (velocity rms, control power correlated with 6 disturbance, control power
correlated with z disturbance) were statistically significant.
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Factor
Measurement || Texture | Dots | Text/Dots Interaction
Pso + 0 +
Ps: + + +
RMS, + + 0
RMS, + + 0

Table 4.3: Statistical significance for the 4x2 Analysis of Variance (texture x dots)
from Experiment 2. The presence of the dots significantly reduces the effects of
texture, which is clearly observed when the dots are not present. “+” indicates
statistical significance, “0” indicates lack of statistical significance. For this factorial
analysis, none of the effects or interactions had marginal statistical significance.

are shown in Figure 4.3. The only difference between these two conditions is the
presence of the lines of splay. The analysis revealed a significant effect on both Py
and Fj,: The presence of the lines of splay was associated with higher levels of con-
trol power correlated with the relevant disturbance (Fj.), and lower levels of control
power correlated with the irrelevant disturbance (FPsg). There was also a marginal
effect on the velocity rms, RMS,: It was slightly lower when the lines of splay were
present. The effect of lines of splay on the position rms (RMS,) was not statistically
significant. The results are shown in Figure 4.3.

The numerical values for means and standard errors, as well as the values used to

determine statistical significance, are contained in Section E.3 of Appendix E.

4.2.2 Individual Models

Measurements of f’,, and Y were made using the technique described in [62] and
Appendix B. Each operator completed a total of eight data runs in each condition;
for the transfer-function measurements, the six time histories exhibiting the lowest
velocity and position rms were used. Although a total of ten operators completed the
test protocol, the results of only eight were used for the ANOVA, and are discussed
here. One operator was replaced when he volunteered that he had adopted a new

control strategy midway through the data runs; since this was not consistent with the
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test instructions, his data were not included in the analysis. Another operator was
replaced because he had participated in Experiment 1. It was initially thought that
some of the participants from Experiment 1 would have to be used, simply because
of a shortage of participants. This proved not to be the case. When it became
feasible to run only naive participants that had not participated in Experiment 1,
this participant was replaced in the data analysis with another, naive, participant.
The data from these two (replaced) participants are not included here.

The parameter identification techniques used were identical to those used on the
Experiment 1 data, described in Section 3.2.2, with the exception of the model form
used for Y,. The plots of the measurements and model fits for all operators and
conditions are shown in Figures E.1 through E.64 of Section E.5 in Appendix E. The

simplest form of model Y, found to correspond well with the measurement );',, was:

(s +wp)
(s2/w? + 2¢ns/wn + 1)

Y, = K,e™™ (4.1)

The inclusion of the two highest-frequency data points (at approximately 8 and 13
rad/sec) made it necessary to include a second-order term in the denominator, to
represent the neuromuscular dynamics. As can be seen from Table E.8, this term was
typified by values of wy in the range of 5 to 10 rad/sec, with (y varying from 0.3 to
0.7. This representation for Y, and the previously defined structures for Y5, and Yp,
(Equations 2.42 and 2.43, respectively), generally provided good fits to the data. The
measurements }}p and )}9 had considerably lower variances overall than those obtained
in Experiment 1. The standard error estimates for Yp and Yy, for all operators and
conditions, are shown in Figures 4.4 and 4.5, respectively. The reduced variances
were probably due to several factors, including 1) increased simulation update rate,
2) pre-screening participants for a minimum level of performance, and 3) spreading
the training and data collection over several days (reducing the effects of fatigue).
As was the case in Experiment 1, the parameter data is quite extensive. It is
presented in it’s entirety in Section E.4 of Appendix E. Ounly a subset of this data will
be presented in figure form within this chapter. First, the parameters identified for Y,
will be discussed. The fit quality index J,, and parameters K, and w,, are contained

in Table E.7 in Appendix E. The parameters 7, wy and (5 are in Table E.8; the
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Figure 4.4: Standard error estimates of }A/,,, as a function of frequency, for all opera-
tors and conditions in Experiment 2. The standard error is related to the standard
deviation for this data by se = ¢/v/6 (the measurements are ensemble averages from
six repetitions). The technique used to determine the standard error is described in
Section B.2. A value of 3 dB is commonly used in manual control research as the
cutoff point for the maximum acceptable standard error; a dashed line is shown as a
reference at this 3 dB point. These variances represent a significant improvement
from Experiment 1 (Figure 3.4).
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Figure 4.5: Standard error estimates of Y, as a function of input frequency, for
all operators and conditions in Experiment 2. The standard error is related to the
standard deviation for this data by se = ¢/v/6 (the measurements are ensemble
averages from six repetitions). The technique used to determine the standard error
is described in Section B.2. A value of 3 dB is commonly used in manual control
research as the cutoff point for the maximum acceptable standard error; a dashed
line is shown as a reference at this 3 dB point. These variances also represent a
significant improvement from Experiment 1 (Figure 3.5).
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crossover frequency w, and phase margin ¢,, of the combined function Y,,Y, are shown
in Table E.9.

Overall, the parameters of Y, showed little variation with texture. As was the
case in Experiment 1, the crossover frequency was somewhat affected by the texture
for particular operators, although the variation between operators was of a greater
magnitude. The crossover frequency and phase margin ‘for all operators and conditions
are shown in Figure 4.6. In Experiment 1, there appeafed to be some effect of texture
on the crossover frequency. In this experiment, there ai;)pears to be a similar effect for
the conditions without the dots, although the individual differences between operators
is typically greater than the variation within a particular operator. There appears to
be no effect in the cases with the dots. The crossover frequency of the loop indicates
the bandwidth of effective response; higher crossover frequcncies are associated with
better closed-loop tracking performance (assuming adequate phase margin). The
trends observed in the crossover frequencies are consistent with the ANOVA results
in figure 4.2; the “denser” textures (more potential cues) are associated with both
higher crossover frequencies and lower rms errors. In the textures without the dots,
the texture with the most cues (Grid) has the highest crossover frequency and lowest
rms values; the texture with the least cues (Line) is generally associated with the
lowest crossover frequencies and highest rms values.

In Experiment 1, there appeared to be little variation in phase margin with tex-
ture, which imiplies that the textures had no effect on the stability of the closed-loop
human/vehicle system. The results of this experiment were quite similar, with the
possible exception of the Line texture without dots. There was a modest increase in
phase margin (5 to 10 degrees) with this condition, relative to the other conditions, for
several of the operators. However, in all conditions, the phase margin was adequate
to provide good closed-loop stability (no values below 20 degrees were observed). The
tendency to increase phase margin in that particular condition could be an attempt

of the operator to account for uncertainty in the visual cues.

In Experiment 1, it appeared that the amount of lead the operators were gener-
ating was possibly affected by the texture. The effect is not present in the Experi-

ment 2 results. The lead break frequency wy, for all operators and conditions is shown
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Figure 4.6: Crossover frequency and phase margin for all operators and conditions
in Experiment 2. When the dots are not present, the crossover frequency varies as
a function of scene complexity (higher crossover frequencies with the Grid Texture,
lower with the Line texture. When the dots are present, there is little if any effect of
texture on crossover frequency. Phase margins do not appear to vary within operators
as a function of texture, with the exception of the Line texture without dots: This
texture is associated with an increase in phase margin with most of the operators.
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in Figure 4.7. There are at least two possibilities; one is that the effect observed
in Experiment 1 was solely due to chance; without standard error measurements on
the parameters, this is difficult to assess. Another possibility is that the modifica-
tion to the disturbance signal done in Experiment 2 produced a change in strategy
that canceled this effect. One characteristic that has been observed in human oper-
ator modeling is that as the bandwidth of the disturbance signal increases, an effect
known as low-frequency phase droop occurs [28]. When this happens, the phase gen-
erated by the human operator at the low frequencies (generally less than 1 rad/sec)
decreases noticeably. The bandwidth of the longitudinal disturbance was effectively
increased in Experiment 2 (relative to Experiment 1) by increasing the power at the
highest frequencies. This increase in bandwidth of the disturbance is another possible
explanation for the effect disappearing.

Although not shown graphically here, there was essentially no effect on the neuro-
muscular parameters wy and (n as a function of texture. This can easily be verified
by reviewing the data contained in Table E.8.

Now attention will be turned to the identification of parameters to fit the mea-
surement Yy. The identified parameter K, and fit quality index Jg, for the one-cue
model, for all operators and conditions, is shown in Table E.10. The parameters A,
K., and fit quality index Jg; of the two-cue model, for all operators and conditions,
are shown in Table E.11. The parameters K,, K3, and K., for the conditions without
and with dots, are shown in Figures 4.8 and 4.9 respectively.

It was hoped that this experiment would allow a more conclusive determination
of whether the one-cue or two-cue model was more appropriate. As in the previous
experiment, two different comparisons were done to aid this determination. One was
to test the similarities of the model parameters by examining the ratio Kg/ K, ; values
of this ratio near unity indicate relatively little difference between the one-cue and
two-cue models. This ratio is shown for the conditions without and with dots in
Figures 4.10 and 4.11, respectively.

In nearly all cases, this ratio is well below unity, which would indicate that the
two-cue model is potentially more descriptive of the data. Moreover, with the dots,

this ratio is consistently and significantly below unity, indicating that the two-cue
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Figure 4.8: Identified parameters K, (left), Kz (middle), and K, (right) for all op-
erators, in texture conditions without dots in Experiment 2. K, is the parameter in
the one-cue model that corresponds to the sensitivity of the visual cue used for both
position and motion; refer to Figure 2.6 and Equation 2.42. Kj is the parameter in
the two-cue model for the sensitivity of the visual cue used for motion sensing; K,
is the parameter for the position visual cue. Refer to Figure 2.7 and Equation 2.43
for the two-cue model. Dashed lines on the plot (and labeled in the right margin)
indicate the predicted values of these parameters for the potential visual cues exam-
ined (refer to Table 4.1). Examples of the visual cues are shown in Figure 2.11. To
review, A, refers to displacements or motions along the lines of splay, Ay, and \ay, are
horizontal components of motion or displacement of features (absolute and relative
respectively), and A, and Aa, are vertical components.
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Figure 4.9: Identified parameters K, (left), Kz (middle), and K, (right) for all op-
erators, in texture conditions with dots in Experiment 2. K, is the parameter in
the one-cue model that corresponds to the sensitivity of the visual cue used for both
position and motion; refer to Figure 2.6 and Equation 2.42. Kj is the parameter in
the two-cue model for the sensitivity of the visual cue used for motion sensing; K,
is the parameter for the position visual cue. Refer to Figure 2.7 and Equation 2.43
for the two-cue model. Dashed lines on the plot (and labeled in the right margin)
indicate the predicted values of these parameters for the potential visual cues exam-
ined (refer to Table 4.1). Examples of the visual cues are shown in Figure 2.11. To
review, \, refers to displacements or motions along the lines of splay, A, and Aa are
horizontal components of motion or displacement of features (absolute and relative
respectively), and A\, and A, are vertical components.
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Figure 4.10: The ratio K3/K, from Experiment 2 for all operators, in texture condi-
tions without dots. K3 and K., are the motion and position visual cue sensitivities,
respectively, in the two-cue model. The two-cue model becomes equivalent to the
one-cue model (in which one visual cue is used for both position and motion sensing)
when the ratio Kg/ K., is unity. The data is strongly supportive of the two-cue model,
rather than the one-cue model, when this ratio is well above or below unity, which it
is in all cases here.
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Figure 4.11: The ratio Kg/K, from Experiment 2 for all operators, in texture con-
ditions with dots. K3 and K, are the motion and position visual cue sensitivities,
respectively, in the two-cue model. The two-cue model becomes equivalent to the
one-cue model (in which one visual cue is used for both position and motion sensing)
when the ratio K3/ K, is unity. The data is strongly supportive of the two-cue model,
rather than the one-cue model, when this ratio is well above or below unity, which it
is in all cases here.
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model is particularly descriptive of this condition. However, this analysis needs to be
augmented with a check of the fit quality improvement, between the one-cue model
and the two-cue model, to determine that the difference in parameters was not due to
chance variations in the data. This is done by examining the ratio of the fit quality
parameters for the two-cue and one-cue models, specifically Jgp/Jp;. This ratio is
shown in Figure 4.12. In Experiment 1, it was hypothesized that the addition of a
parameter would on average provide a one-in-twenty improvement to the index, based
upon twenty data points. For this case, 24 data points (12 complex measurements) are
being fit, so on average a 1 in 24 improvement (or 4.2%) might be expected. Setting
a threshold of three times this for acceptance of the two-cue model requires a 12.5%
improvement, or a ratio of Jgo/Jg less than 0.875. These two values are included in
Figure 4.12. As can be seen, in nearly all of the cases, the two-cue model provides
a significant improvement in the fit. Two conditions that are notable exceptions are
the Perpendicular and Line textures without the dots: the models for the majority of
the operators in these cases to not meet the “acceptance” threshold for the two-cue

model.

Overall, the models provided extremely good correspondence with the data. Fig-
ure 4.13 shows the magnitude (in dB) of the measurement divided by the model
(Yp/ Y, and Yg/ Ypo) for every operator, condition, and frequency. A common cutoff
value in manual control research for acceptable levels of variance is 3 dB; the number
of points that fit within this 3 dB limnit was computed and is displayed on the plot.
For the fit to Y,

23]
for nearly 98% of the data points. For the fit to Yy, the two parameters in the two

the five parameters defining the model Y, provided fits within 3 dB

cue model Yy, provided fits within 3 dB for 86% of the data points.

Figure 4.14 shows the phase difference that occurs between the measurements
and model for all operators and conditions. A systematic failure of the model to
accurately represent the phase of the highest frequency component of Yy is apparent.
The clear trend is that the measurement exhibits less phase delay than the model in
nearly every case. Several attempts were made to account for this in the modeling
procedure, including reducing the time delay associated with the Y, modeling (relative

to the time delay in the Y, model); none was successful. Because this frequency point
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Figure 4.12: The ratio of the fit quality indices Jgo/Jg;, for the two-cue versus one-
cue model fits,for all operators and conditions for Experiment 2. Lower values of J
indicate a better fit. The two-cue model provides a substantially better fit in nearly
all cases. The fit improvement using the two-cue model is also uniformly better in
the conditions with the dots. The dotted line at 0.958 shows the level of improvement
in the ratio that might be expected from chance with the addition of one parameter
to the model (going from one-cue to two-cue); the dashed line at 0.875 shows three
times this level.
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is well above crossover, this error in the model has little effect on the closed-loop
characteristics of the combined operator-vehicle systcm.' Although this is an intriguing
finding, no additional effort was expended to model this observed characteristic.
The range of actual values derived for Kz and K, generally corresponded with
the range of potential values from the visual cue analysis: nominal values from the
analysis are shown in the figures. One interesting difference relative to Experiment 1
is that it appeared that some operators were achieving values closer to the best
achievable value of one. Operator 3 achieved values oii’ K5 near unity with the Grid
and Parallel textures without dots, and between unity and 2.6 for all of the textures
with the dots. When this operator was questioned about his strategy, he indicated
that he had in fact used one of these optimal visual cues, An. This operator controlled
the lateral displacement of a feature (either a grid intersection or a dot) close to the
edge of the display, deliberately neglecting the vertical motion. This cue would ideally
provide a value of unity for Kz. It is interesting that he did not achieve this value
for the position cue parameter K. ; this is perhaps due to the fact that the operator
indicated that he still occasionally referenced the position of the baseline from the
bottom of the display (A,), which would yield a value of 10 if used exclusively. This
self-reported strategy is consistent with the identified parameters, if we consider that
the ideal cue A\, was used for primarily for motion sensing, and a combination of A,

and A\, was used for position sensing.

4.3 Discussion

The goals from this experiment were to: 1) determine which form of the VCC model,
the one-cue or two-cue, is most representative of the operator’s control strategy,
2) determine what effect, if any, lines of splay in the display have on the control
strategy, and 3) investigate the potential of the model to provide a methodology for
visual cue identification. These goals have been met. The two-cue form of the VCC
model has been shown to accurately characterize the data in a large number of cases:
Reduced measurement variances in the transfer functions }A/,, and Y, made it possible

to differentiate the effects of the models enough to couclusively show the superiority
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of the two-cue form.

The lines of splay have been shown to have a slight, but measurable and statis-
tically significant improvement, on the control activity (Fjs, Ps,) and the velocity
rms (RMS;). The presence of lines of splay is associated with lower levels of power
in the control correlated with 6, and higher levels correlated with x. Lower levels of
velocity rms were demonstrated when the lines of splay were present. The presence
of the lines of splay apparently provide visual information that helps the operator to
distinguish the effects of pitch from the effects of longitudinal displacement.

This model shows great potential as a methodology for the identification of vi-
sual cues. The identified model parameters (Kz and K.,) correspond closely with
the theoretical values for particular visual cues. Specifically, most of the operators
achieved values of K3 (the motion cue parameter) that were in the vicinity of the
values expected if they were sensing the motion directed along a line of splay (A;).
One operator, who achieved values for this parameter below that expected for this
cue, indicated that he was using a cue that would provide a lower value of Kz (A,
from controlling the lateral position of a feature). And also, notably, this particular
operator’s values of K increased dramatically when operating in the texture condi-
tions that lacked this particular cue (Perpendicular and Line without dots). Values
of K., the position cue, did not have as strong a correspondence with a particular
visual cue, but instead tended to rest between the values of two cues. This could
be explained with an attention-sharing strategy between the position of the baseline
(A\,) and another more optimal cue that might be difficult to use for absolute position
judgements (such as A, or displacement oriented along a line of splay).

One more question arose at the completion of this experiment: How, if at all, is
our perception of desired states through a perspective scene different from the case
in which that state is directly displayed? This question was the target of the last

experiment, described in the following chapter.
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Chapter 5
Experiment 3

The objective of performing Experiment 3 was to gain a better understanding of
the differences and similarities between perspective and compensatory displays. A
compensatory display is one in which the error information is presented directly to
the operator (through, for example, the displacement of an indicator from a null
position).

In the VCC model development contained in Chapter 2, two fundamental differ-

ences were identified between compensatory and perspective displays:

1. The perspective display is (potentially) affected by other vehicle states than the

ones being controlled.

2. The perspective display performs a nonlinear transformation on both the con-

trolled and uncontrolled states, through the process of perspective projection.

In Experiment 3, these differences are compared and controlled. Compensatory
displays were developed in which the actual state (longitudinal position) was directly
displayed. In some conditions, this state went through the same nonlinear transfor-
mation of the perspective-projection process before being displayed. The perspective
display was also compared with and without the pitch disturbance present. In this
way, the effects of these three interacting factors could be examined: perspective
vs compensatory, linear vs nonlinear state transformation, disturbance vs no distur-

bance.
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In some of the compensatory displays, a rate bar was incorporated to provide
additional motion cueing to operators. This was done to heip offset an anticipated
improvement in motion sensing by the operators using the pe}spective display.

The data analysis consisted of both Analysis of Variance and individual modeling
of the control activity, as was done in the two previous experiments. Because a number
of the conditions did not have the pitch disturbance present!, \f(isual cue modeling was
not performed (since the model is based on parameters that ﬁt the measurement Yj,
which is not available when there is no pitch disturbance preélsent). Only the control
strategy to the relevant state was modelled (Y,).

The results will show that:

1. The effect of the nonlinear transformation of the state (due to perspective pro-

jection) is minimal.

2. The effect of uncontrolled states on the perspective displays is to reduce perfor-
mance, compared with the compensatory display. The Grid display is associated

with much smaller decrements in performance than the Line display.

3. The compensatory displays are associated with better position rms than the
perspective displays; this is likely due to the lack of a null indicator on the

perspective displays.

The rate bar was not associated with any better levels of performance as had been an-
ticipated; the likely reason is that the velocity was not filtered before being displayed.
Had this been done, the compensatory performance might have been substantially
better: one potentially valuable result was unfortunately missed. Even so, we learned
some very valuable things.

A description of the experimental protocol for Experiment 3 is provided in Sec-
tion 5.1. Section 5.2 contains the experimental results from both the Analysis of

Variance and the individual modeling, and Section 5.3 contains discussion of those

results.

'In particular, none of the compensatory display conditions had the pitch disturbance present,
since only longitudinal position was presented.
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5.1 Protocol

5.1.1 Participants

Six participants were used, all of whom had participated in Experiment 2. The
data from two of these participants had not been used for the Analysis of Variance
and individual modeling analysis in Experiment 2. One operator was not included
because he had participated in Experiment 1, and the decision was made to use all
naive participants in Experiment 2 to remove any potential for bias due to previous
experience with the displays. It was believed that this would not be a factor in
Experiment 3 since any training or recency effects should have averaged out between
the operators due to the extensive exposure of all the operators.

The second operator was removed from the Experiment 2 analysis because he
volunteered that he had changed his strategy midway through the data runs. This
was not believed to be a factor that would prevent his participation in the third
experiment, since the strategy change reported was specifically a visual cue that
would be optimal with the pitch disturbance present. Since the disturbance was not
present in the third experiment, it was believed that he would be a reliable participant

in this experiment.

5.1.2 Apparatus

The test apparatus was identical to that used in Experiment 2, described in Sec-
tion 4.1.2.

5.1.3 Scene

Four new displays were developed, identified as compensatory displays. The compen-
satory display elements are shown in Figure 5.1. The four displays were made from
combining two conditions: 1) with and without rate bar, and 2) linear and non-linear
state scaling. The purpose of the nonlinear scaling in the compensatory displays was
to replicate the nonlinear transformation that occurs through perspective projection,

so that the two conditions are the same in that respect. Details of the scaling are
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Figure 5.2: Linear and nonlinear scaling of position and rate information in the
compensatory displays of Experiment 3. Position error element scaling is on the left:
rate bar scaling is on the right. Displacement is presented in screen coordinates, with
full scale deflections of 1. Note that the nonlinear rate bar scaling is a function of
both longitudinal position rate and longitudinal position (z).

presented in Section F.2 of Appendix F; the relationship between the linear and non-
linear scaling is shown in Figure 5.2. The figure on the left shows the linear and
nonlinear scaling of the position error element. The figure on the right shows the
linear and nonlinear scaling of the rate bar, which is also a function of longitudinal

b2

position (labeled “z = ...” in the figure).

The effect of the nonlinear scaling was to replicate the motion of the baseline in

the perspective displays. This scaling produces some interesting artifacts when large
displacements in longitudinal position occur. One such artifact is a virtual ”horizon”
formed when the operator moves very far backward from the starting position. In
a perspective scene, if the operator moves a great distance backward, the original
reference point will move eventually to the horizon, and will not appear to move as
the operator moves farther backward. This can be seen in the nonlinear position error
element in Figure 5.2: the position goes to an asymptotic value (corresponding to the
horizon in the perspective projection). The fact that a feature far distant from the
operator will not appear to move regardless of the operator motion can be seen in
the nonlinear rate-bar scaling. As longitudinal position (z) becomes more negative,

meaning the original position is in front of the operator, the rate-bar scaling reduces.
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As the longitudinal displacement increases, the motion of the rate bar drops to zero
(in the figure, where z = —o0). This is consistent with a perspective display, in which
the horizon does not appear to move as a function of longitudinal position change.
Two other displays were also tested: the perspective displays with the Grid and
Line textures (without dots) tested in Experiment 2. This made a total of six display

conditions; two perspective, and four compensatory.

5.1.4 Task

The task was similar to Experiment 2, although no pitch disturbance was present.

The task instructions given to participants are shown in Section F.2 of Appendix F.

5.1.5 Procedure

Each operator participated for a total of two days. In this experiment, there was
concern that the compensatory displays would be particularly difficult to use for long
periods of time. The primary purpose of this experiment was to determine if the
ANOVA analysis revealed any differences between the displays, and the secondary
purpose was to examine the operator transfer functions for any changes due to the
experimental manipulations. Since visual cue modeling was not being performed,
it was not necessary to conduct as many long (four minute) data runs. A smaller
number of long data runs was believed to be sufficient to achieve a reliable estimate
of Y,, since in the earlier experiments the variances on the Y, measurements tended
to be much smaller than the variances on Yy. Although a smaller number of long data
runs was believed to be sufficient for transfer function measurement, it was thought
that more data runs might be required to show statistical significance of any observed
effects in the ANOVA analysis. A number of shorter data runs were also incorporated,
with the goal of improving the ANOVA results.

As was done in Experiment 2, written instructions were provided to the operators;
they are shown in Section F.2 of Appendix F. On day one, participants were pro-
vided with eight one-minute familiarization runs in each of the compensatory display

conditions. The feedback was identical to that received in Experiment 2; a sum of
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the velocity and position rms was displayed as a score. The additional familiarization
runs with the compensatory displays were given to remove any bias that the operators
might have due to additional time already spent using the perspective displays.

Following the compensatory familiarization runs, the operators were given five
one-minute training runs in each of the six experimental conditions. The order of
presentation varied with the operator, as shown in Table 5.1. Then a total of 15
one-minute data runs were completed in each of the conditions. The data runs were
collected in blocks of five per condition, just as in the previous training runs.

On day two, the participants were asked to complete a total of four four-minute
data runs in each of the six conditions, with the same order of presentation used on
the first day. The data runs were grouped in sets of two per condition, with one
one-minute training run before each two data runs.

The six conditions tested, with shortened identifiers, are below:
1. Perspective Grid (G)

2. Perspective Line (L)

3. Compensatory w/o rate bar, linear scaling (C)

4. Compensatory w/ rate bar, linear scaling (CR)

Compensatory w/o rate bar, nonlinear scaling (C*)

[eSa)]

6. Compensatory w/ rate bar, nonlinear scaling (CR*)

5.2 Results

5.2.1 Analysis of Variance (ANOVA)

The outcome variables examined were the position rms error (RMS;) and velocity

rms (RMS, ). Several combinations of factorials were analyzed. including as factors:
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Figure 5.3: Mean velocity rms (left), and mean position rms (right), for all operators,
as a function of display type and disturbance condition in Experiment 3. Standard
error bars are shown. The two perspective displays are the Grid and Line displays.
The four compensatory displays are: linear scale (C), nonlinear scale (C*), linear scale
with rate bar (CR), and nonlinear scale with rate bar (CR*). Items to note are that
the performance is not improved with the rate bar (displays CR and CR*); in fact, the
display with the rate bar and nonlinear scaling (CR*) is associated with the highest
rms of the no-pitch-disturbance conditions. This was due to large excursions on two
trials. The failure of the rate bar to improve performance is likely due to a lack of
filtering of the velocity before displaying. When the pitch disturbance is not present,
the only observable difference between the compensatory displays and perspective
displays that with the perspective display there is a larger position rms; this is likely
due to the lack of an explicit null indicator on the perspective displays. When the pitch
display is present, the performance with the Line perspective display shows much
larger values in both position and velocity rms than with the compensatory display.
With the Grid perspective display, the velocity rms is unaffected by the presence of
the pitch disturbance, but the position rms is larger than with compensatory display,
albeit to a lesser extent than with the Line perspective display. It is expected also
that the performance with compensatory display would be better still with a good
rate display — perhaps substantially so.
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Operator Condition
1 CR | C* G |CR*| C L
2 CR*| C L CR | C* G
3 C G |CR*| C* L CR
4 C* L CR | C G | CR*
5 G CR | C* L |[CR*| C
6 L |[CR*| C G | CR | C*

Table 5.1: Experiment 3 presentation order by operator. (G) and (L) denote the
perspective Grid and Line conditions. (C) and (CR) denote the Compensatory and
Compensatory with Rate Bar displays, respectively, both with linear error scaling.
(C*) and (CR*) denote the compensatory and compensatory with rate bar displays,
respectively, using nonlinear scaling of the error.

presence or absence of the rate bar, perspective versus compensatory, linear versus
nonlinear scaling, pitch disturbance absent versus present?.

Overall, the different conditions did not yield any statistically significant differ-
ences from each other. Mean velocity and position rms, for all operators and displays,

are shown in Figure 5.3. Particular findings to note were that:

1. There was no difference between the compensatory displays using linear and

nonlinear scaling.

2. For the particular (noisy) rate display used, the rate bar did not improve per-

formance?.

3. When the pitch disturbance was not present:

(a) There was no difference between the Grid and Line perspective displays.

(b) The only significant difference between the perspective and compensatory

“The comparison of the pitch-disturbance-present condition, for the Grid and Line displays, was

done using data from Experiment 2.
AThis result is in direct contradiction of a large body of work in rate augmentation of displays,

and should not he considered to bhe of any significance, given the noisy character of the rate display
used. This is addressed further in Section 5.3.
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displays was in position rms, which was higher with the perspective dis-
plays. This is most likely due to the fact that with the perspective displays,
operators need to control position from a remembered position; there is no
null indicator on the display. With the compensatory display, an explicit
null indicator is present, creating improved position rms performance. Ve-

locity rms was not appreciably different between the displays.
4. When the pitch disturbance was present:

(a) The velocity rms using the Grid display was not affected; the Line display
was associated with a large increase in velocity rms compared to the Line

display without the pitch disturbance.

(b) The position rms was increased with both perspective displays; the Line

display was associated with a much larger increase than the Grid display.

These results presented are based upon analysis of the long data runs collected
in Day 2 of the experiment. The inclusion of the additional short data runs did not

appear to appreciably affect the ANOVA analysis results.

5.2.2 Individual Models

Measurements of }A’p were made using the technique described in [62] and Appendix B.
All of the four long data runs taken in each condition were used to formulate the
measurement. As was noted previously, the visual cue modeling (fitting of models to
Ya) was not possible with this experiment due to the fact that no pitch disturbance
was present. Therefore, the only individual models that can be examined are the
models fitting to Yp.

As in Experiment 2, the form of the model Y}, that best fit the measurement Yp

was:
(S + wL)

Y — K ‘—TS
P r¢ (82/wi + 2(ns/wn + 1)

(5.1)

The parameters of this model were fit using the modified DTF technique described
in Section C.1 of Appendix C. Because all of the participants had also participated
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Figure 5.4: Crossover frequency and phase margin as a function of pitch disturbance
and texture, for the perspective displays, for all operators in Experiment 3. The
disturbance-present condition is based on data collected during Experiment 2. When
the pitch disturbance was present, the crossover frequency decreased with the major-
ity of operators, on both display types (Grid and Line). The decrease in crossover
frequency, signifying a lower loop gain, is a likely factor in the increased position and
velocity rms observed in Figure 5.3. Phase margin increased for most operators, with
both display types, when the pitch disturbance was present. The increase in phase
margin indicates a tendancy of the operators to be less aggressive, probably due to
the uncertainty introduced with the disturbance.
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in Experiment 2, it is possible not only to do comparisons between the displays in
Experiment 3, but also between conditions in Experiment 2 and 3. In Experiment 2,
all of the experimental conditions were done with the pitch disturbance present. In
Experiment 3, there was no pitch disturbance. Therefore, it is possible to compare
the effect on the pilot model parameters, with and without the pitch disturbance
present, for the Grid and Line texture displays (these are the only two display/texture
types used in both experiments). The plots of the measurements and model fits for
all conditions and operators discussed in this section are contained in Figure F.1
through F.48 in Section F.4 of Appendix F.

The effect of the disturbance is most easily seen in the crossover frequency and
phase margins, shown in Figure 5.4. With both the Grid and Line textures, the
crossover frequency decreased, and the phase margin increased, for nearly all opera-
tors, when the disturbance was present.

When the pitch disturbance was not present, there was little effect of display type
on the crossover frequency or phase margin. Figure 5.5 shows the identified crossover
frequency and phase margin for all displays and operators for the condition when the
pitch disturbance is not present. As can be seen, the only fairly consistent effect is
that the phase margin increases slightly with the perspective Line display relative
to the other displays. Also, it appears that for some operators, the compensatory
display with the rate bar and linear scaling was associated with somewhat higher
crossover frequencies. The identified model parameters of Y,,, as well as the crossover
frequency and phase margin, for all of the conditions in Experiment 3 and the two
conditions used for comparison from Experiment 2, are presented in Section F.3 in

Appendix F.

5.3 Discussion

Two particular differences between compensatory and perspective displays were con-
trolled and compared in this experiment: 1) the effect of disturbances, and 2) the
nonlinear transformation of the state. The second factor, the nonlinear transforma-

tion through perspective projection, did not produce any measurable effect in either
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Figure 5.5: Crossover frequency and phase margin as a function of display type
for all operators in Experiment 3. Pitch disturbance is not present in any of the
conditions. There is minimal variation in these parameters as a function of display
type, although the Line display is associated with somewhat higher phase margin and
lower crossover frequency. The compensatory display with rate bar, using nonlinear
scaling, was associated with an increase in phase margin for most operators - this
is consistent with the observation of most operators that the rather noisy rate bar
provided was distracting as opposed to helpful.
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the Analysis of Variance or the individual modeling: There was effectively no dif-
ference between the linear and nonlinear compensatory disp‘iays. This is no doubt
largely because operators were capable of controlling the state;to a degree of accuracy

which kept the transformation in a linear range a majority of the time.

The effect of disturbance through uncontrolled states, which affect a perspective
display but not a compensatory display, was noticeable and ad\f/erse. The performance

decrement with the Grid display due to the disturbance was xiluch less than with the
|

Line display, but still substantial. ’

Even when the pitch disturbance was not present, the perspective displays were
associated with higher values of position rms than the compensatory displays: Thus
is a significant result of the research. The higher position rms performance with the
perspective displays is most likely due to the fact that the opérators were required to
remember the null position* (because of the lack of a fixed reference). This difference
might have been still larger if the compensatory display had also included a well-
filtered (less noisy) rate display.

Indeed, much of the previous work in display design and augmentation has shown
that displaying rate information generally aids the operator in performing manual
control tasks [37, 63, 42, 64, 65, 35, 1]. This was not the case in this experiment.
Here, most operators felt that the rate bar they were given either did not help their
performance, or actually hindered it. The lack of observed éffect in the Analysis of
Variance supports this subjective opinion. Several operators indicated that is was not
helpful, since they could not differentiate between the “bad” velocity occurring from
a disturbance, and the “good” velocity occurring because of an aggressive control
strategy. Another factor that likely made the rate bar difficult to use was the fact
that it was “raw” velocity, with no filtering. Typically, rate elements incorporated in
displays have some degree of filtering before presentation. The lack of filtering led, in
this case, to an extremely active rate bar; in fact, the periodic nature of the highest
frequency component of the disturbance was clearly visible. Since this disturbance

was well above the crossover frequency (13 rad/sec), and therefore well outside of

1Pilots sometimes use references in the vicinity of the windscreen, such as a particular rivet, as
a null indicator for the horizon line.
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the ability of the operator to control, it represented a fairly spurious source of data
that could not be effectively incorporated in the control strategy. The rate bar was
initially incorporated to determine if it might offset any improved rate sensing with
the perspective displays. What was learned instead was that the presentation of rate

information cannot be usefully done without considerable care.
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Chapter 6
Discussion

The results of the Analysis of Variance (ANOVA) in the three experiments showed
that manipulation of the scene content could produce measurable, statistically signifi-
cant effects on the outcome variables studied. This was considered to be an important
prerequisite to the individual modeling. The goal of this work was to develop a visual
cue model that could account for observed effects; the modeling becomes little more
than an academic exercise if the effects being modeled could easily have occurred by
chance.

The two-cue forin of the VCC model, validated with the Experiment 2 data,
has been shown to characterize the data very accurately. The number of model
parameters is very small relative to the number of data points; in Experiment 2,
only five parameters were necessary to accurately model the control response to the
longitudinal disturbance (consisting of 24 data points). Two parameters were required
to characterize the control response to the pitch disturbance, also fitting 24 data
points. This highly accurate model is based upon the simple hypothesis that the
operator chooses visual cues in the image and controls them directly, as opposed
to performing a full reconstruction of the vehicle state. It is a direct validation of
Gibson’s “ ‘Ground Theory’ of Space Perception” [8], particularly two of the five

postulates:

1. There is always some variable in stimulation (however difficult it may be to

discover and isolate) which corresponds to a property of the spatial world.
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2. The stimulus-variable within the retinal image to which a property of visual

space corresponds need be only a correlate of that property, not a copy of it.

An interesting characteristic of the model is that: 1) operators appear to derive
motion and position from two different sources!, and 2) the motion source is asso-
ciated with superior disturbance rejection relative to the position cue. This second
characteristic is potentially important since it might be linked with human percep-
tual capabilities. The human visual motion processing system requires the stimulus
to have certain characteristics before “apparent motion” results, or a perception of
motion. Specific conditions that can make apparent motion disappear are update
rates that are too slow, or too much movement of a feature between updates. Cur-

rent visual flight simulation applications tend to favor highly accurate scene content,

often with the tradeoff of lower update rates. Little attention is paid to whether the
normal scene motion at these update rates can still stimulate motion detection in the
entire image. Some researchers have proposed modifying visual scene simulation to
take better advantage of human visual motion perception capabilities, potentially at
no computational cost [66, 67]. Nakayama [68] has proposed tuning of the update
rate and scene complexity to be more compatible with visual motion processing ca-
pabilities. High scene complexity is not necessary when the image is moving quickly,
because we are sensitive to only the lowest spatial frequency components when the
temporal frequency is high. However, update rate needs to be high enough to prevent
loss of “apparent motion” which occurs when features move too far spatially between
updates.

It is difficult to generalize these findings to visual cue requirements of fixed-wing
aircraft, because of their requirement for constant forward speed, but some of the
results can be related to helicopter visual cue requirements. Roger Hoh [69] conducted
a study in which he manipulated the available visual cues in helicopter hovering
maneuvers by limiting both field of view and level of scene detail. This study was

done in actual helicopters using outside visual references. Field of view manipulation

'Grunwald and Merhav [33] also discovered that a two-cue model best represented the case of
unconstrained viewing in a lateral vehicular control paradigm. The two cues were related to near
and far distances, but in terms of the state information provided, one cue provided more motion
information than the other.
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was done by draping cloth panels with cutouts in front of the evaluation pilot (a
safety pilot had an unrestricted field of view). The scene detail manipulation was
accomplished through the use of special goggles, which would “fog” the scene and
obscure the fine details (called microtexture) in the environment, without reducing
the ability to perceive outlines of large objects. Some of Hoh’s findings are very
consistent with the results of the current experiments. One very interesting finding
was that the pilots felt that the attitude cues were significantly reduced with the
lenses fogged than with the lenses clear. This was counter to the expectations of the
experimenter, since the horizon was clearly visible with the lenses fogged, and the
position of the horizon in the image has a one-to-one correspondence with pitch angle

(neglecting motions related to the lateral degrees of freedom). Hoh states:

“From this data it appears that pilots utilize information in the near
field on an equal level, or even more than the distant horizon for attitude

information in low speed and hover.”

He goes on to state that operational experience in flight simulators seemed to support
this conclusion, with inadvertently large pitch excursions being reported in simulators
(even simulators with good motion fidelity).

This outcome is consistent with the experimental results in this dissertation. In

Experiments 1 and 2, it was found that the presence or absence of scene detail,

through grid intersections or dots, was associated with much better rejection of the
pitch motion from the longitudinal motion. The theoretical visual cue analysis also
reveals that the most effective differentiation of pitch from longitudinal motion is from
the near-field cues, specifically the lower outer corners of the display. It is possible
that the very features that enable rejection of pitch could also enable the detection
of pitch. In Hoh’s study, the lack of cues in the most critical part of the image, from
the lack of microtexture, could explain the observed effects.

In Experiment 2, the presence of lines of splay was shown to have a statistically
significant effect on the amount of control activity correlated with the irrelevant dis-
turbance. This is interesting because of the relative lack of motion of the lines of

splay; the angles the lines make (in the image plane) remain essentially fixed (pitch
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has a second order effect on this angle). The angle of splay lines has been proposed
and studied numerous times as an altitude cue ([25] is a recent example), but in
the case of changing altitude, the angle of the line correlates with altitude. In this
case, it is possible that these lines provide a fixed reference to help differentiate the
sources of image feature motion; motion directed along a line of splay is correlated
with longitudinal position. This finding could have implications for both simulator

visual scene design and airport markings.

We might expect that, through trial and error, that many current practices are
in fact optimal. An interesting example relates to heliport markings. Public-use
heliports have a large “H” on the landing surface [70]. If lines of splay and discrete
points are essential elements in a visual display to differentiate longitudinal and pitch
motions, the letter “H” is probably the best letter in the english alphabet to be used
for heliport marking. It provides lines of splay (from the two vertical elements),
and discrete points (from the intersections of the horizontal element and ends of
the vertical elements). The letters “I” and “T” would not provide lines of splay,
only a centerline reference. Other letters like “E”, “F” and “L” could provide some

references, but the lack of symmetry would probably not be ideal for lateral guidance.

It is doubtful that such markings would affect the hovering performance of an
experienced pilot when numerous visual cues are available (as in the case of clear
visibility and adequate microtexture). Helicopters are routinely hovered without no-
tations or markings on the ground. However, such markings could become more
important in reduced visual conditions when, as simulated in Hoh’s study, the mi-
crotexture becomes less visible. The results of Experiment 2 showed that even an
impoverished scene (i.e., the Parallel texture without dots) can be used to achieve
performance that is comparable to a much more detailed scene (i.e., the Grids, and all
scenes with dots), provided that the impoverished scene has usable and advantageous
cues available (i.e., A;, or motion oriented along a line of splay). Specifically, for the
position control case, that means lines of splay and individual points (or intersections)
at the lower, outer corner of the display or windscreen. The Parallel texture provided
relatively few cues, but they were ideally located to provide accurate detection of

lateral motion. The simple “H” marking on a heliport could provide guidance that is
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optimal for such a simple cueing element.

The results of Experiment 3 comparing perspective scenes with compensatory dis-
plays show that in some ways, operators can achieve performance with a perspective
scene that is similar to what can be achieved with explicit state presentation (velocity
rms). The lack of a null indicator on a perspective scene does degrade position control
relative to conformal display usage. These results should only be generalized to cases
in which the operator is capable of controlling the desired state within a region that
produces quasi-linear motion of the perspective-scene elements. This is a factor under
the control of the designer through choice of the scene content (location of relevant

cues) and imaging geometry (field of view).

The results from Experiment 3 should not be generalized to support the use of
compensatory displays (in lieu of perspective scenes or displays) in all cases where
state measurements are available. This study examined only the case in which one
state was being displayed and controlled; it did not address at all the issue of inte-
grating information from different states into one display. There is extensive evidence
that when multiple states are being controlled simultancously, the natural integration
that occurs in a perspective scene is superior to most compensatory displays, in spite
of the coupling of states occurring through perspective projection. Helicopter control
during approach and landing is one example. Helicopters with no stability augmen-
tation (which typically possess unstable open-loop dynamics) are routinely lown and
landed in visual conditions. Studies indicate that augmentation to the control system
is required to accomplish this when only compensatory displays showing attitude and
flight path error are available [65, 71]. Further improvements in performance and
workload occur when additional augmentation is performed on the control systemn
and/or the display. Typical display augmentation includes the addition of predictor
or flight director elements (which integrate attitude, position, rate and/or acceleration

information).

The results of these experiments alone, and the resulting models, would appear to
be relevant to only this application (or closely related ones, as in the helicopter exam-

ples given above). However, the visual cue analysis method, and modeling technique
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developed here, have extremely wide potentials for application. The basic method-

ologies can be applied to any quasi-static control task using a perspective scene.

In order to fully apply this methodology with a wider variety of vehicle dynamics,
disturbances, and scenes, a better understanding of what cues the operator is capable
of attending to, and in what circumstances, is necessary. In the first two experiments,
there was a particular cue that was available in all of the perspective scenes: the
vertical distance between the horizon and a feature in the foreground (Aa,). This cue
would have provided the best possible disturbance rejection, yet the evidence suggests
that none of the operators used the cue effectively. By applying this analysis method
to a variety of tasks and scenes, an inventory of usable and unusable visual cue sources
can be developed. A particularly interesting area to examine would be the interference
effects, if any, on visual cue perception with both lateral and longitudinal motions.
Many studies have shown that in the case where the vehicle dynamics are relatively
uncoupled (e.g., when lateral and longitudinal modes of motion are not coupled)
that there is little interference from controlling both axes simultaneously. It would
be particularly interesting and useful to understand the perceptual characteristics
underlying this.

This method has been used to “identify” particular visual cues, but the identifica-
tion can only be done by process of elimination to some extent: only one parameter
actually specifies the cue, and it is possible that two different cue sources can share the
same parameter. This was in fact the case with the three “optimal” cues )\, (lateral
position), Aan (relative lateral spacing), and Aa, (relative vertical spacing), which all
had characteristic parameters of unity. The hypothesis that Aa, was not being used
by anyone was determined through process of elimination; in the scenes where that
cue was the only one present that would produce a value of unity, nobody achieved
parameter values near unity. It is possible that this method could be extended to pro-
vide more definitive identification of cues through injection of additional disturbance
sources. Each degree of freedom has a different effect on the perspective projection
transformations, and the identification of individual parameters for each disturbance
source might be consistent with only a particular cue. However, this approach would

have some fundamental limitations: the current method relies on spectral separation
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of the disturbances, and it would be difficult to add more than one or two additional
disturbance sources with zero correlation. However, even adding one additional source
could produce an enormous benefit.

The results of this effort have significant implications for a number of topics. We
have control over visual scene content in a number of manual control applications. In
vehicle design, we can choose the size and shape of the windows. Actual scene fea-
tures for vehicle control are also selectable to some extent; runway markings and lane
markings are two examples relevant to aircraft and automobiles. In synthetic scene
generation, we have some control and choice over update rate and scene complexity,
as well as display resolution. Designers of remotely-operated systems and vehicles can
have some control over the display resolution, update rate, dynamic range (number
of grayscale values, for example), and field of view. Evaluation of these factors in
the design process has tvpically been done empirically; this methodology offers an
algorithmic approach for evaluating the potential effects of perspective-scene manip-

ulation, and validating the results.
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Chapter 7

Contributions and Conclusions

7.1 Summary of Contributions

The unique contributions of the work described in this dissertation were listed in
Section 1.3. Conclusions of the research. relevant to these contributions, are presented

below.

e Development of a simple model which for the first time accurately characterizes
human manual control through perspective scene viewing using a combination

of cues.

The two-cue form of the VCC model developed in this dissertation demonstrates
a high level of ability to match the measured input/output characteristics of humans
performing manual control tasks using perspective displays. The fits to the data are
consistently good with a limited number of parameters. The form of model for Y,, (the
operator transfer function between position and control output) used in Experiment 2
featured five parameters (K,, 7, wy, wy, (y), which for each particular condition
(operator x texture) were chosen to fit 24 data points (12 complex measurements).
For each of the 64 conditions, this model provided a fit that was within 3 dB of the
measurements with over 97% of the data points.

The extensive body of past work in manual control would predict the results for the

Y, model fits; the models used were consistent with known characteristics of human

131



manual control. What is notable about this new model is the high quality of fit
achieved on Yy (the measured operator transfer function between pitch attitude and
control output). The two-cue model has two free parameters (K3 and K.); the other
parameters of Y, are set based upon the Y, measurement. With the parameters of Y,
having been set with a different measurement ()}p), and the additional two parameters
of the two-cue models, high degrees of fit accuracy were achievéd to the 24 data points
in the Y, measurement. Specifically, in Experiment 2, the two|parameters of the two-
cue mode] provided fits within 3 dB of the measurements foiyr over 84% of the data
points. Thus, this simplified model accurately characterized perspective display usage
in this manual control task.

Most of the textures clearly elicited a two-cue reéponse from the human operator.
The motion cue response also tended to have reduced disturb?ance content compared
with the position cue (K3 < K,). If, in fact, this motion-cue response is due to
specialized human motion perception, this leads to predictions that could be made
concerning when the human motion perception would not be excited by the stimuli.
Reductions in update rate, for example, could degrade the human motion-processing
capability to the extent that the perforinance is no better than the position sensing.
This methodology could help guide visual scene database designers making tradeoffs
between scene complexity and update rate. In cases where scene complexity must
be sacrificed to allow sufficient update rates, it should be pqssible to identify those

portions of the image in which the benefits of scene detail are minimal.

e Development of more comprehensive knowledge through a more complete data

set, with more statistical power, than the prior art.

The results of Experiment 1 did not allow determination of the most appropriate
model (one-cue versus two-cue) due to high variances. In Experiment 2, efforts to
reduce the amount of measurement variance in the control response to pitch attitude
were successful: The reduction in variance produced definitive evidence that the
operator was using two different cue sources. In some conditions, the amount of
power in the control that was correlated with the pitch attitude disturbance was a:

low as 3%. It is a notable achievement that the measurement variances achieved fc
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this variable were generally below 3 dB, often below 1 dB.

Analysis of Variance (ANOVA) results also confirin that manipulation of task
variables could create measurable differences in the outcome variables. Probabilities
of chance occurence in Experiment 2, on those results found to be statistically sig-
nificant, were typically well below the 5% threshold. The consistency of the ANOVA
findings lends additional credibility to the VCC model, since it shows that the task
variables that are predicted to change the input/output relationships of the oper-
ator are producing statistically significant effects on both the characteristics of the

operator output (Fjsg, Ps;) and the performance (RMS,, RMS,).

e First detailed understanding through examination of visual cues, of the longi-

tudinal position control task using a perspective scene.

It is apparent that the hovering control of a helicopter-like vehicle, through a perspec-
tive display, can be strongly affected by the characteristics of the scene. Redundancy
of available cues appears to be important, although it was shown that even a rela-
tively sparse display (the parallel texture) could produce very similar performance to
a richer display (grid, dots), if that sparse display had optimal cues available. The
available cues in this sparse display were limited to the position of the baseline, and
the intersections of the baseline with the lines-of-splay. The optimal cues in this dis-

play are likely the presence of discrete points at the lower outer corners of the display,

which allow better differentiation of longitudinal motion (which occurs along lines of

splay) from pitch motion (which is primarily up and down).

e An improved understanding of the differences and similarities between perspec-

tive and compensatory displays.

Two main effects have been considered as differences between the perspective and
compensatory displays. The first effect was the fact that a single state could be
isolated and displayed on a compensatory display, while a perspective display is (typ-
ically) subject to effects from multiple states. The second factor is the nonlinear
scaling of states that occur in the perspective display through perspective projection.

These effects were isolated and studied. It appears that:
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1. With a perspective display (unlike with a compensatory one), the coupling of
states can adversely affect performance because it is (usually) impossible to find

a visual cue that correlates perfectly with the desired state.

2. The nonlinear scaling has a minimal effect (given that the perturbations remain

small).

3. Lack of a null indicator on a perspective display, as opposed to a compensatory

display, has an adverse effect on performance.

It has already been noted that in some cases where multiple states are being displayed
and controlled, that the perspective display can be superior to the compensatory dis-

play. That case was not examined in the current work, and these findings (particularly

regarding the superiority of the compensatory display) are not generalizable to these

cases.
e Development of simplified parameter identification procedures.

The large number of operators and conditions necessitated the development of
streamlined parameter identification procedures. In Experiment 1, this new proce-
dure was used to fit three parameters to 24 measurements!. In Experiment 2, five
parameters were fit to 64 measurements, and in Experiment 3. five parameters were
fit to 36 measurements. The fact that the resulting models exhibited a high degree of

correspondence with the measurements is a validation of the method’s effectiveness.

e Demonstration of a methodology to identify visual cues used in a manual control

task.

The new modeling and identification technique described herein provides measurable
quantities that can be related to the probability that the operator is using a particular
visual cue. This technique has been used to determine when an optimal visual cue is

not usable for closed-loop control, at least not to the degree of accuracy that could

1The term measurement here describes the transfer function measurement as a function of fre-
quency; in Experiment 1, a single measurement consisted of ten complex values. In Experiments 2
and 3, each measurement consisted of 12 complex values.
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be theoretically obtainable. This optimal visual cue was the distance, in the image,
between the horizon line and the line in the foreground; none of the operators was
capable of using this cue, although most of them indicated an awareness that keeping
this distance fixed would be an effective control strategy. In general, the parameters
derived for the motion cue were consistent with a strategy of sensing motion directed
along the lines of splay (As). The one operator who demonstrated better values of this
parameter than are obtainable with A, indicated verbally that he had used another
cue (horizontal displacement of features in the display) which would account for the
lower values. Further work is required to fully realize the potential of this technique

for identifying visual cues: This will be discussed in the following section.

7.2 Recommendations for Future Work

The work described in this dissertation provides a framework for modeling the use of
perspective displays in manual control tasks. It also provides a potential methodology
for identification of visual cues used in perspective displays. However, much work is
still required to fully realize the potential of the model contained herein. The current
research has shown that the parameters of the VCC model are consistent with par-
ticular visual cues, but definitive identification is impossible because of the existance

of multiple cues with similar parameters. By incorporating one or more additional

disturbance states, it should be possible to create a unique mapping between the pa-
rameters and particular visual cues, which would potentially enable definitive visual
cue identification.

First and foremost, the model must be validated in a variety of conditions. The
original Crossover Model consisted of both a parameterized model form, and a set of
adjustment rules of the parameters, which varied as a function of the task variables.
The two-cue VCC model developed wn the present research can be likened to and works
closely with the parameterized model form of the Crossover Model, and the adjustment
rules from this experiment are consistent with the available visual cues. A basic set of
adjustment rules based upon the ability of the human to perceive and use particular

cues, and the likely effect of the vehicle degrees of freedom, needs to be developed.
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Task variables that need to be studied include the imaging characteristics (field-
of-view, resolution, update rate), scene content, controlled element dynamics, and
forcing functions.

The VCC model currently does not incorporate the possibility of either an explic-
itly or implicitly generated commanded state. This would require incorporation of
pursuit models of manual control, and depending on the situation, potentially even
preview models (in which the operator sees not only current commanded state, but
future commanded state).

The only degrees of freedom considered in this work were longitudinal position and
pitch attitude. All of the vehicle states couple together in the process of perspective
projection, but we can easily disambiguate some of these states visually (roll from
pitch, for example). We need to develop a better understanding of the process by
which we decouple states that are affecting particular visual cues.

This model did not incorporate any effects of perceptual thresholds. There are
two factors that could affect a person’s choice of visual cue, one of which has not
been considered here. It was assumed that the operator would, when possible, choose
a visual cue with the least “contamination” from the disturbance state . That is
not the same as picking a cue that has the greatest sensitivity to the controlled state.
The potential exists, in the equations of perspective projection, for the location in the
image of maximum sensitivity to the relevant state to be different than the location at
which the lowest amount of “contamination” from other states occurs. Both factors
need to be considered, because the simplistic strategy of choosing a cue for which the
“contamination” is minimized could also result in a cue for which the sensitivity to
the relevant state is unacceptably close to perceptual thresholds.

Another potential area of improvement to this technique is the incorporation of
eye-tracking. Eye-tracking alone cannot determine what information the human op-
erator is using, for at least two reasons. First, the receptor field of the eyes is quite
large (more than 180 degrees field-of-view for binocular viewing), so knowing the fix-
ation point just determines the source of the highest-resolution information. Second,
knowing where the eyes are fixated does not determine what judgment the person is

making (i.e., determining the absolute position of a feature, or the relative distance

136



between two features). However, the eye movements could help to reduce the poten-
tial set of visual cues to be considered, since some might be shown to be outside of
the required resolution range to be usable (due to the filtering that occurs in the eye).
Another useful benefit of eye-movement measurement could be to refine the two-cue
processing model. Certain types of eye movements are linked with motion perception,
and study of eye movements could help to determine when motion processing is being
optimally stimulated.

Many areas of research and design could benefit from the analysis methodology
developed here. Training could include learning to attend to and perceive the most
important visual cues for control. Decisions concerning field-of-view (for natural
viewing or camera images) could be influenced by an analysis of the scene content and
vehicle dynamics. Accident investigations in which loss of visual references is thought
to be a factor could potentially benefit from this analysis technique. Simulator design
can be influenced by determining tradeoffs of factors such as resolution, update rate,
and time delays.

The research described in this disseration provides a fundamental improvement
in our understanding and modeling of perspective display usage. While much work
remains to be done, the current results provide a foundation for the development of
new tools for the design and analysis of perspective scene usage in manual control

tasks.
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Appendix A

Perspective Projection

Transformation

In order to analyze the relationship between vehicle states and image motion, it is
necessary to determine the transformation which occurs between the state of the
vehicle, the location of an object in the world, and the location of the object in the
image plane.

Figure A.1 defines the geometry of the imaging situation analyzed here. The
perspective projective transform defines the position of an object D in the image

plane, (y,, z,), to be [58]:

" 0 1.0 0 o
w

b= 0 01 0 b (A.1)
w z

1 ~1/F 0 0 1

The parameter w is an arbitrary scale factor which is not equal to zero. The value
F is the distance between the center of projection P and the image plane; it would be
related to focal length of a camera. The coordinates xp,yp, zp are the position of the
feature D relative to the image plane coordinate system, i, j, k. Since the position of D
and the center of projection P are typically expressed relative to another, earth-fixed

coordinate system, a transformation is necessary.

xpi+ypj+z2pk=Fi—-P+D (A.2)
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Figure A.1: Perspective projection transform geometry diagram.
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P and D are the positions of points P and D relative to the coordinate system I, J, K.

The transformation between the two coordinate systems, using Eulerian angles [59],

i c¥c® sWcO -s0 I
Jp=|-sVYc®+c¥sOs® cWcd + sUsOsd cOsd J (A.3)
k sUs® + cUsOcd  —~cPsd + sUsOcd cOcd K

The resulting transformation between world displacements P and D to image plane

coordinates (y,, z,) is:

v, = w((Dxy — X)(—s¥Ycd + c¥sOsP)
+(Dy = Y){(cWcd + s¥UsOsdP) + (Dz — Z)cOsd) (A.4)
z, = w({(Dy — X)(s¥s® + c¥sOcP)

+(Dy = Y)(—cWUs® + sUsOcd®) + (Dz — Z)cOcd) (A.5)
~F
(Dx — X)c¥cO + (Dy = Y)s¥cO© — (D7 — Z)s©
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Appendix B |

Transfer Function Measurement

Techniques

B.1 Sum-of-Sines Technique

The Sum-of-Sines (SOS) technique has been used extensively for human operator
transfer function measurement [72]. It is particularly well suited for situations in

which the inputs and/or disturbances are variables under the control of the experi-

ment, designer. The SOS technique calls for inputs and disturbances which are sums
of multiple sine functions, each at a different fundamental frequency and phase. Al-
though the resulting signal has a completely random appearance to a human operator,

the characteristic of the signal lends itself to analysis using frequency based methods.

In Section 2.4, it was stipulated that the disturbance functions u and ¢ were
not. correlated. This is done by making each signal from sums of sines of different
fundamental frequencies from each other. The exact composition of these signals used
for the experiments is described further in Sections D.1 and E.1. Now some practical
guidelines and limitations of the SOS technique will be discussed. Specifically, the
particular elements which must be carefully chosen are the sampling interval, the run

length, and the frequencies used to make up the SOS signals.
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B.1.1 Sampling Interval

The sampling interval T limits the bandwidth of the maximum frequency which can be
identified; the bandwidth will be the Nyquist frequency, or 1/2T. For example, with
a sampling interval of 0.03 seconds, the Nyquist frequency is 16.6 Hz. The sampling
frequency needs to be set high enough that it is at least two times above the expected
bandwidth of the system (including disturbances) to be identified; otherwise, the
frequency content of the signal which is above the Nyquist frequency will be aliased

into lower frequencies during processing, producing an erroneous measurement.

B.1.2 Run Length

One requirement for the run length is that it be long enough to allow identification
of the lowest frequency content of the input signal. Common practice in human
modeling is to measure frequencies as low as 0.15 rad/sec; one cycle at this frequency
takes approximately 42 seconds. Another common practice is to allow at least 4 or 5
repetitions of the lowest frequency within a data run; five repetitions of this frequency
requires approximately 210 seconds. or 3.5 minutes.

Another requirement, which is perhaps obvious but should be stated, is that the
run length (time elapsed) should be an integer multiple of the sampling interval.
This is usually a natural consequence of digital simulation, but is included here for
completeness.

Commonly, the Discrete Fourier Transform is used develop cross spectral density
estimates from the time histories of the state. Although it was not done in this
dissertation, choosing the run length such that the number of samples is a power of
2 will allow great computational advantages in data analysis (much more efficient

algorithms exist for DFT when the length of the sequence is a power of 2).

B.1.3 Frequency Components

The frequency components of the SOS signal should all be multiples of the period
established by the total run length. This is easily accomplished by specifying discrete
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values of frequencies which are available to form the SOS signal (designated wy):

wk=2;k', k=1,23.. T (B.1)

r

where T, is the data run length in seconds.

McRuer’s recommendations [30] for input signals for human operator transfer
function identification are to pick approximately 12 frequencies, equally spaced loga-
rithmically from approximately 0.15 to 15 rad/sec. The magnitudes of the different
frequency components can have noticeable effects on the operator strategy, and must
be chosen carefully; a thorough treatment of this subject is beyond the scope of this
section. More detailed guidelines concerning the choice of input signals frequencies

and magnitudes can be found in [30].

B.1.4 Minimizing Errors from Nonlinearities

The guidelines noted above would theoretically work for any linear system identifi-
cation, but in fact the system we are identifying, the human operator, does exhibit
nonlinear characteristics. We can take one additional precaution to assure that these
nonlinearities do not adversely affect accurate modeling of the linear characteristics.

A linear system acting upon a sine wave signal, with a fundamental frequency of

wy, for example, will produce an output which only possesses that fundamental fre-

quency. However, a nonlinear system acting on this signal would produce output not
only at that fundamental frequency (wy), but also at harmonics of the frequency (2wy,
3wy, etc.) [72]. We can minimize the effects of nonlinearities on the measurements
by ensuring that measurements at each frequency are not affected by harmonics from
other frequencies.

This can be prevented by choosing frequency components that are not harmonics
of each other. This is easily done at the higher frequencies by choosing only prime
numbers for the value of & in Equation B.1. At the very lowest frequencies, this is
not always possible because of the relatively small number of primes, but at these
frequencies, there are no inputs at the frequencies below that should be causing

harmonics.



B.2 Estimation of )A’p and Yg

In section 2.4.2, equations relating the components of the one-cue model and the
system state power and cross spectral densities were developed. These equations are

repeated here, originally Equations 2.25 and 2.26:

|
¢6u _ Y;J}/c(buu + ¢ru \
¢I‘U. }/;¢Uu + )/C¢T'U j
% = 1 }/PKad)Oq + ¢)rq } (B3)
¢0q 1~ )/p)/c ¢0q

(B.2)

These equations are based on the assumption that the input signals u and ¢ are
uncorrelated. Both of these equations include some correlation between the inputs
and the remnant term r. The assumption was further made. ifl Section 2.4.2, that the

correlation between this remnant and the inputs is also zero. While this assumption
is valid in a statistical sense, meaning that the expected value should be zero, it is
unlikely that zero correlation will occur in a particular experimental run.

The potential effect of this noise on model function estimates can easily be seen.
The Discrete Fourier Transform (Equation 2.35) coefficients are used to estimate the
cross spectral density measurements (reference Equations 2.31 through 2.34). For a

single experimental run, the estimate of the cross spectral density ¢s, /¢, would be:

én _ D) _ D)
b X(DUUT ~ X(N)

With a measurement based upon a single experimental run, V(f) has no effect. This

(B.4)

measurement can be shown to have the following relationship with the model:

D(f)  Y,Yau+r

X() ~ Yt Yor (B:5)

This would be an accurate representation of the model Y}, only if the magnitude of
r is small. A common modeling error reported by novice modelers is the unwitting
identification of the inverse plant dynamics when the noise magnitude becomes large.

For 7 >> u, we have:

(B.6)



Averaging can be used to improve these estimates of cross-spectral densities. Lev-

ison [62] recommended averaging the products of the DFT coefficients before taking

the ratio:
v, — DOUGF -
X(HUf)
;. _ DURUY B8
O(HQ(f)

The primary assumption enabling this is that the processes described by Y, and Yj
are statistically stationary. From these ensemble averages, Levison also developed
relationships for estiinating the variances of these estimates. That derivation is pre-
sented here in its entirety. First, it is worthwhile to quickly review the assumptions
made concerning the characteristics of the remmnant. Levison makes the assumption
that the remnant is a zero-mean Gaussian process whose real and imaginary Fourier
coefficients have zero cross-correlation, zero covariance across frequency and replica-
tion, and equal autocovariances. It is referred to as a “stationary incoherent™ process,
implying the the remmnant power is statistically constant, and the phase is randomly
distributed between 0 and 27 across frequencies and replications.

One is interested in knowing the variance of the estimate of Y},. The estimate Y),,

and the correct or true value, Y, . can be expressed with the following relationship:
Y, =Y, (1+¢) (B.9)

The term € represents a measurement error. We are interested in estimating variance
in this measurement, specifically how much this estimate varies from the correct value.

The estimate of the variance is [73]:

N, -
2 _ T - 2
U(. - NT _ lE(|)/;) Yl)l ) (B.].O)

where E(e) is the expected value, or mean of (o), and N, is the number of samples

used to derive the estimate. To simplify further analysis, the following definitions are
made:
D = DUV (B.11)
X' (B.12)

i
b
=
=
=



Using a similar notation as was used in Equation B.9, these terms can be broken into

their “true” values and measurement error:

D = D.+D (B.13)
X = X +X (B.14)

In these equations, D', and X represent the true values, and D’ and X’ represent the

measurement errors. Y, can be written as:

. D .+D
Y, = et (B.15)
X+ X
If D! and X/ are the “true” values, one can also write:
Y, =Y, 1+D'/D, (B.16)

I XX

If one assumes that the measurement error X’ is small' relative to X/, making

X'/ X! << 1, one can approximate this expression as:

. D X
Y,=Y, (1 + - Yé) (B.17)
The measurement error term e is thus identified as:
D X
€ = -b_é — -)-(:Z (B18)

By solving Equations B.13 and B.14 for D' and X', and substituting into Equa-
tion B.18, the expression for € becomes:

DX
== - B.19
‘=5 "X (B.19)

The variance of € can then be expressed as:

! / /% L]
. E((QT_’)'(T)<D/* _XH)) (B.20)

N, -1 D, X!/\D~ X!
IThis is not the same as assuming that the magnitude of the remnant is small. X’ is an ensemble
average of multiple measurements. The assumption is that the phase of the remnant is uniformly
distributed from 0 to 27, which makes the expected value of this measurement error zero. This

assumption becomes more accurate as more measurements are used to form the ensemble average

of X'.
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The expected value of the terms such as D'D™ can be estimated through ensemble
averaging of the experimentally derived values (remember that D' = D(f)V(f)*).
The expected values of the terms such as D’ D" should in fact be equivalent to the

expected value of I, squared. With these substitutions, one can write:
p q

. N, [(DD")  (X'X7) _2Re<<D’X"))J (B.21)

‘TN -1|DDY) T X (D X"

a 1
|

This standard error is a quantity that relates to the standard error of the estimate
of the compler quantity Y,,. A common method used to examine the characteristics
of frequency domain transfer functions is to derive two scalar parameters which to-
gether specify the function: gain and phase. Levison developed an expression to help
relate the standard error estimate to these two characteristics. Defining A and B to

represent the real and imaginary parts of €, Equation B.9 can be expressed as:
Y, =Y, (1+A+jB) (B.22)

The gain G of this quantity is defined as:

G = 10Logy(Y,Y;) = 4.34Lu(Y,Y;) (B.23)
= G,+G. (B.24)
where
GO = 10L0g10(yp0) (B25)
G. = 4.34Ln(1+2A+ A*+ B?) (B.26)

G. represents the error in the measurement of the the “true” gain, G,. Expressing
the natural logarithm with the series expansion Ln(l + ) = z — 2%/2 + 23/3 — .. .,

and dropping powers higher than 2, the expression for G, can be written as:
G, = 4.34(2A + B* — A?) (B.27)

Since A and B are the real and imaginary components of ¢, and € is assumed to

have a uniform phase distribution, the expected value of the quantity A? — B? is zero.
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Further noting that the expected value of A is half of the expected magnitude-squared
of €, we can obtain for the variance of G.:
o2 = 2(4.34)%7 (B.28)
oc = 6.140, (B.29)

Now the expression for the variance in the phase will be developed. The phase

shift of Yp can be expressed as:

B
Ge = tan[l +A} (B.30)
For A, B << 1, this becomes:
¢e = B(1 — A + A?) (B.31)
o2 = E(BQ(l iy A2)2) (B.32)

The expected values of all the terms in the above equation are zero? with the exception

of B?; thus

0.2

o = E(B%) = %E(J) =% (B.33)

The standard deviation terms derived here, o, 0¢, and o, are representative of
the sample variances, which reflect the trial-to-trial variations expected. However,
we are more interested in knowing the variance in our estimate of the mean values;
this term is known as the standard error. For any of the standard deviation terms
used, the relationship of the standard error (denoted se) to the standard deviation

(denoted o) for N, samples is [73]:

s€ =

ol
— .34
T (B.34)

2Because the remnant is assumed to be uniformly distributed in phase between 0 and 27, expected
values of any terms containing products of A and B will be zero.
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Appendix C

Model Fitting Technique

C.1 Time History Fit Technique for Y

Assume that a measurement vector H(w) is available. The free parameters u of a
model Y,(u,w) are sought to minimize differences between the model and the mea-
surement. To obtain best fit in the frequency domain, it makes sense to actually
minimize the difference of the ratio from 1, or Y,,/H — 1. Selection of parameters u to
accomplish this cannot be done analytically; a numerical approach is necessary. How-

ever, a closed-loop, non-numerical approximation can be obtained through discrete

approximation techniques.

As described in [74], a discrete transfer function can be obtained through least-
squares methodology. The discrete transfer function can be transformed to an equiva-
lent frequency domain function through a w-transform [75]. The generalized transfer

function of the form:

e e, 8" + 1" 1S+ ¢

Y. (s) =
P(S) d,,s" +dn_1SnPl ...d15+d0

can be represented with a discrete transfer function:

v 2 P(byz7 4 bz 2 4 b,27)
2) =
n(2) l—a1z7' —ap2=2— ... = ayz™™

(C.2)

If, for example, the transfer function Y),(z) is meant to represent a transfer function



d/z, the corresponding difference equation would be:
5k+l =0y + Op_102 + ... + (5k_m+1am + .’Ek_pbl + .Ik_p_lbg + ot -'L'k—p—nbn (03)

Given a measured time history &(t), x(t), taken at time increments 7', a matrix
can be formed to generate a least-squares solution for the discrete transfer function

i
parameters a, and b,. i
i
a

(ay )

az

Ok+1 O Ok—r o Th—p  Theop-i :
Ok p =10k Ok-2 o0 Thopo1 Thep-z <b’1 (C.4)

i by

L o)

The parameter vectors a and b can be determined from a least-squares fit of time
history data. The resulting discrete transfer function can be converted to a continuous

transfer function via the w-transform:

1+wT/2
nﬁéﬁ% (C.5)
After substituting this relationship into Equation C.2, the w-plane transfer func-
tion Y,(w) can be used to approximate the s-plane transfer function Y,(s). The
quality of the fit can be evaluated through a correlation coefficient, which would have
a value of unity for a perfect model. If A’ is the measured output vector, and A is

the modeled output vector, the correlation coefficient R? is defined as:

R?=1-[3 (A - AY]/ S (A (C.6)

This same technique can be used to find a best fit to the frequency domain mea-
surements H by reconstructing a time history from the frequency measurements.
Given a complex measurement H, taken at frequency w, with magnitude A, and
phase ¢,, an input-output time history can be constructed. If the input is assumed
to be

z(t), = sin(w,t) (C.7)
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The output corresponding to this measurement would be
6(t), = Arsin(wit + ¢,) (C.8)

This pseudo-time-history can then be used to construct a matrix as in Equation C.4
to perform a least-squares solution for the vectors a and b. The term above can be
used to form a fit corresponding to one measurement point; the entire measurement
vector can be fit by concatenating the input-output matrices together. In order to
keep the highest magnitude measurements from influencing the fit disproportionately,
all the components are weighted with the inverse of the measurement amplitude. It
is also possible to weight with the inverse of the variance to put greater emphasis on
fitting the low-frequency points.

The time granularity with which one reconstructs the input-output vectors is not
limited to the time interval upon which the original measurenient was based; it is pos-
sible to simulate a smaller sampling interval in order to estimate the time delay more
accurately. However, the size of the matrix to be inverted scales with the inverse of
the sampling interval chosen. For a time vector that spans the measurement interval,
this can be quite large. Another limitation is that it is not equivalent to fitting in the
frequency domain. However. it will come much closer to a frequency domain fit than
standard time-domain fitting techniques, and it is an analytical solution as opposed

to numerical.

This technique was used to fit the model parameters of Y}, to the measurement Yp.
Each measurement was inversely weighted with the magnitude of the measurement
and the standard error. For Experiment 1, the time delay 7 was varied in .01 second
steps to determine the best fit using the correlation coefficient R%. For Experiments 2

and 3, 7 was varied in increments of 1/72 sec.

C.2 Grid-Search Fit Technique for Yy, and Yy

In the case of the fit to the measurement f’g, a smaller number of parameters needed
to be fitted, making a numerical technique practical. The performance index J was

used to evaluate the one-cue and two-cue model fits, respectively. If we assume that
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the measured frequency response vector is H, and the modeled vector is H, and the

standard error vector is o, the equations defining the performance index J are:

(C.9)

! [log(Rz) log(Rz*)} (C.10)

O, 0,

=

R, =

J =

1

H,, H, and o, denote the ith elements of the vectors H, H , and o, respectively.

The model parameters to fit Hy were derived through a grid search technique to

minimize the performance index J.
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Appendix D

Experiment 1 Appendix

D.1 Vehicle Dynamic Simulation

i —02 0 0] (z 11 0 P)
iy = 0 0[<{zp+[{0 0O 0 u (D.1)
6 0 0 o] le 0 0 0.033] lgqg

The position x is in units of eyeheights. The angle # is expressed in radians. This
state-space equation was converted to discrete form for real-time simulation with a
sampling interval of 0.03 seconds, using the first-order hold [75]. The resulting discrete

state-space equations were:

Thyl 09940 0 O Tk 0.0299  0.0299 0 Ok
Thil = (0029 1 O Tr ¢+ [ 0.00045 0.00045 O ur (D.2)
9k+1 0 0 1 gk 0 0 .001 qk

The control input of the operator is §; the maximum range achievable was from

-4 to 4. The disturbances u and g had the following form as a function of time (¢):

12 a,27k, 2rk,
t) = S t N .
u(t) 1§=1D 510 003(240 +p> (D.3)
12 0,27k, 27k,
t = 0SS 4
q(t) ;D 510 c()s(240t+pl> (D.4)
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x disturbance (u) 6 disturbance (q)
i|a | ko |w (rad/sec) || ¢ | a, | k, | w, (rad/sec)
1] .5 6 16 1 1.5 7 18
21 .5 110 .26 21 .5 |11 28
31 .5 |15 .39 31 .51 16 42
4 { .51 23 .60 4 | .5 25 .65
5 .5 | 37 97 o | .5 | 38 .99
6 [ .5 | 59 1.54 6 | .5 | 61 1.60
7 1.05 ] 101 2.64 7 1.05] 103 2.70
8 {.05|127 3.32 8 1.051 131 3.43
9 1.05| 149 3.90 9 |.05] 151 3.95
10 [ .05 | 179 4.69 10 | .05 | 181 4.74
11 (.05 | 311 8.14 111.05{ 313 8.19
12 | .05 | 521 13.64 12 | .05 | 523 13.69

Table D.1: Experiment 1 disturbance spectra magnitudes and frequencies.

The actual values of a, & and resulting frequencies (w = 27k /240) are shown in
Table D.1 for the two disturbance spectra. D was set to a value of .7.

The phase offsets (p,) for each repetition and disturbance (¢ and u) were precom-
puted with a random number generator, randomly distributed from -7 to m. These
angles used for each repetition are shown in Table D.2 (u) and D.3 (q).

The design of the disturbance spectra is in accordance with guidelines supplied
in [30] for pilot frequency response identification. Most of the points are logarithmi-
cally spaced between .15 and 15 rad/sec. Two additional points were added in the

range between 1.6 and 4.7 Hz to better capture the response in this region.

D.2 ANOVA results summary

D.2.1 2 x 2 Factorial

In the main body of the report, only figures depicting the means and standard errors
of the dependent measures are presented, with tables summarizing the degree of

statistical significance. The actual values for statistical significance are shown in
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Repetition

1 1 2 3 4 ) 6

1 ]-288 | 259 | 1.78 | 0.97 | 0.16 | -0.66
2 | 210 | 046 |-1.18 | -2.83 | 1.81 | 0.17
3| 041 | 034 | 0.26 | 0.19 | 0.11 | 0.04
4 1-1.96 | 1.15 | -2.02 | 1.09 | -2.08 | 1.03
5 || 1.57 | 0.80 | 0.02 | -0.75|-1.53 | -2.30
6 || -0.93 | -1.53 | -2.13 | -2.72 | 2.96 | 2.37
7 H-2311020 | 272 |-1.05| 146 |-2.31
8 (| 2.83 | 0.05 | -2.74 | 0.76 | -2.03 | 147
9 I 0.53 | -1.10 | -2.74 | 191 | 0.27 | -1.37
10 || 1.93 | 2.50 | 3.07 | -2.64 | -2.07 | -1.50
11 0.77 | 1.81 | 2.86 |-2.38|-1.34 | -0.29
12 || -3.10 | -0.20 | 2.70 | -0.69 | 2.21 | -1.17

Table D.2: Experiment 1 phase angles p, used to define disturbance u per repetition.

Repetition

1 1 2 3 4 ) 6

1 ]]-0291-214 | 229 | 043 | -1.43 | 3.00
2 1-1.03] 1.80 | -146 | 1.46 | -1.90 | 1.03
3 |[-3.13[-1.77|-042 | 094 | 2.30 | -2.63
4 | 3.08 | 0.70 {-1.67 ] 2.23 |{-0.14 | -2.52
5 ||-0.84 | 3.06 | 0.68 | -1.70 | 2.21 | -0.17
6 || 046 | 1.84 | -3.06 | -1.68 | -0.30 | 1.08
7 |-2741 231 | 1.08 | -0.15] -1.38 | -2.61
8 11-2.18 { 0.19 | 256 | -1.36 | 1.01 | -2.91
9 -1.78 | 2.25 | -0.01 [ -2.27{ 1.76 | -0.50
10 || -2.26 | -1.90 | -1.54 | -1.18 | -0.81 | -0.45
11 || -1.82 | -1.18 | -0.55 | 0.09 | 0.72 | 1.35
12 )] 046 | 1.61 | 2.76 | -2.38 | -1.23 } -0.09

Table D.3: Experiment 1 phase angles p, used to define disturbance g per repetition.



Psg Ps. RMS; RMS,
Texture | Noise || mean | SE || mean | SE | mean | SE mean | SE
Grid absent || 1.54 | 0.19 {[ 52.59 | 3.76 || 0.456 | 0.033 || 0.587 | 0.072
Grid | present || 2.76 | 0.26 || 50.00 | 3.40 || 0.490 | 0.034 || 0.603 | 0.060
Line absent || 1.78 | 0.20 || 49.97 | 1.92 || 0.468 | 0.033 || 0.556 | 0.098
Line present || 9.21 | 2.15 || 39.04 | 3.44 || 0.622 | 0.052 || 0.887 | 0.175

Table D.4: Means and Standard Errors for Psg, Ps,, RMS, and RMS, for the 2 x 2

(disturbance x texture) ANOVA in Experiment 1.

Factor
Measurement || Pitch disturbance Texture Dist/Text Interaction
F(1,5) p F(1,5) p F(1,5) p
Pse 14.54 0.012 9.96 | 0.025 9.47 0.028
P, 16.95 0.009 4.06 |0.101 | 6.07 0.057
RMS; 10.53 0.002 5.74 | 0.062 9.59 0.027
RMS, 10.53 0.023 275 10.158 | 742 0.042

Table D.5: F-test and probabilities for statistical analysis of the 2 x 2 (disturbance
x texture) ANOVA in Experiment 1.

Table D.5. The numerical values for means and standard errors for Psy, FPs-, RMS;

and RMS, are shown in Table D.4.

D.2.2 One-way Factorial

The actual values for statistical significance of the one-way ANOVA are shown in

Table D.7. The numerical values for means and standard errors for Psg, Ps., RMS;

and RMS, are shown in Table D.6.
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Pso Ps. RMS. RMS,
Texture mean | SE || mean | SE | mean | SE mean | SE
Grid 2.76 [ 0.26 | 50.00 | 3.40 {| 0.490 | 0.034 {| 0.603 | 0.060
Parallel 3.80 | 0.66 || 45.85 | 4.06 || 0.573 | 0.042 || 0.783 | 0.084
Perpendicular || 6.67 | 1.59 || 43.02 | 2.78 || 0.578 | 0.029 || 0.721 | 0.079
Line 9.21 12151 39.04 | 3.44 |} 0.622 | 0.052 || 0.887 | 0.175

Table D.6: Means and Standard Errors for Psg. Ps,, RMS, and RMS, for the one-way
(texture) ANOVA in Experiment 1 .

Measurement Factor
Measurement Texture
F(3,15) p
Py 9.44 0.001
Ps, 3.37 0.047
RMS; 5.61 0.009
RMS, 3.50 0.042

Table D.7: F-test and probabilities for statistical analysis of the one-way (texture)
ANOVA in Experiment 1.
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K, Jp

Condition (Texture) Condition (Texture)
Obs. [310) [4(D [5D [6 (D |30 4[5 60
1 202 | 1.71 | 1.88 | 1.65 19.2 | 193 | 17.3 | 33.3
2 1.58 | 1.26 | 1.22 | 1.03 406 | 136 | 7.0 18.9
3 1.24 | 1.31 | 1.28 | 1.06 39.6 | 20.7 | 33.1 | 128
4 1.21 | 1.02 | 0.98 | 0.78 77.7 | 52.2 | 57.6 | 15.1
) 196 | 1.95 | 1.90 | 1.89 62.1 | 49.7 | 37.2 | 35.7
6 226 | 2.01 | 1.96 | 2.35 || 53.3 | 334 | 36.0 | 34.3

T (sec) wy (rad/sec)

Condition (Texture) Condition (Texture)
Obs. | 3(G)[4(@L)|5()[6(L)3(G)|4(L)|s5dD) 6(L)
1 0.48 | 0.51 | 0.54 | 048 0.46 | 0.47 | 0.41 | 0.40
2 0.51 | 0.54 | 0.51 | 048 0.27 | 0.26 | 0.35 | 0.40
3 0.51 | 0.51 | 0.54 | 0.60 0.20 | 0.23 | 0.26 | 0.12
4 045 | 048 | 048 | 045 || 0.20 | 0.18 | 0.25 | 0.34
) 0.51 | 0.51 [ 0.51 | 0.51 0.26 | 0.22 | 0.28 | 0.32
6 045 | 045 | 0.48 | 0.45 0.25 | 0.23 | 0.25 | 0.37

Table D.8: Y, parameters K, w;, and 7, and model fit index J, from Experiment 1.

D.3 Individual Model Parameter Summary

Y, model parameters K, wy, 7, and fit quality index J, are presented in Table D.8.
The crossover frequency w, and phase margin ¢, of Y,Y. are in Table D.9. Yy,

parameter K,, and fit quality index Jp; are in Table D.10. Yjyo parameters Kz and

K., fit quality index Jgo, and the ratio Jgo/Jp are in Table D.11.
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w, (rad/sec) Om (deg)
Condition (Texture) Condition (Texture)
Obs. | 3(G) |4 (L) 50D [6(L)[3(G)j4(L)]5()]|6(L)
206 [ 1.76 | 1.91 | 1.68 246 | 286 | 23.2 | 35.7
1.59 | 1.27 | 1.25 | 1.08 39.6 | 47.0 | 45.9 | 493
1.24 | 1.31 | 1.29 | 1.05 52.5 | 493 | 464 | 57.0
1.21 1.01 | 0.99 { 0.82 57.9 | 62.6 | 58.9 | 59.5
1.97 1.95 1 1.91 | 191 29.0 | 309 | 30.2 | 289
227 | 201 | 197 | 2.37 284 | 356 | 32.8 | 23.0

O O | Qo) DO —

Table D.9: Crossover frequency and phase margin of Y,Y, from Experiment 1.

]\'o J(91

Condition (Texture) Condition (Texture)

Obs. [ 3(G) [4(L) [5(D [ 6 (L[ 3(G) [4@) ][5 ][6 (L)
3.0 4.7 4.9 3.5 195 | 179 | 43.7 | 273
5.6 74 104 | 11.6 25,5 | 17.1 | 14.0 | 17.8
3.7 29 4.5 7.1 216 | 16.0 { 140 | 206
2.7 3.1 9.9 8.0 33.2 | 261 | 188 | 144
3.2 4.9 8.9 9.5 50.1 | 19.0 | 28.8 | 67.5
2.1 4.0 6.3 74 9.9 835 | 264 | 424

DD = W~

Table D.10: Yy, parameter K, and model fit index Jp, from Experiment 1.
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Jo2 Jo2/ Jor
Condition (Texture) Condition (Texture)
Obs. [3(G) [4(L)[5(D |6(L)|3(G)|4(L) |5 |6(L)

1 16.6 | 13.4 | 40.7 | 245 0.85 | 0.75 | 0.93 | 0.90
2 226 | 168 | 134 | 156 0.89 | 098 | 0.96 | 0.88
3 21.6 13.5 { 13.7 20.6 1.00 0.84 | 098 1.00
4 27.2 | 25.0 | 182 | 143 0.82 | 096 | 0.97 | 1.00
5 286 | 139 | 27.7 | 67.1 0.57 | 0.73 | 0.96 | 0.99
6 9.9 83 | 223 | 419 0.99 | 098 | 0.85 | 0.99
Ky K,
Condition (Texture) Condition (Texture)

Obs. [3(G) [4(L) [5(D[6(L)3(G)]4(L)|50)]6(L)
25 |37 | 51 [ 38 [[ 48 [ 69 [ 08 ] 19
48 |72 [101[ 120 || 96 [ 98 [123] 6.9
37 | 26 [ 44 [ 71 || 35 [ 66 [ 60 [ 70
21 | 30 [ 56 | 80 || 59 [ 60 | 42 ] 83
28 | 45 1 88 [ 94 | 68 [ 81 |10.5] 10.0
21 | 41 | 58 | 75 | 25 [ 29 | 95 | 68

O U ] Qaf B

Table D.11: Y,, parameters Kz and K., model fit index Jp, and model fit ratio
Joa/ Jo1 from Experiment 1.
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D.4 Individual Model Fit Plots

The model fits are shown in the following figures (Figures D.1 through D.24).
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Figure D.1: Experiment 1 model fit results for Operator 1, Grid Texture.
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Experniment 1 Operator 2, Gnd
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Figure D.2: Experiment 1 model fit results for Operator 2, Grid Texture.
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Expenment 1 Operator 3, Gnd
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Figure D.3: Experiment 1 model fit results for Operator 3, Grid Texture.
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Experiment 1: Operator 4, Grid
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Figure D.4: Experiment 1 model fit results for Operator 4, Grid Texture.
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Experiment 1: Operator 5, Grid
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Figure D.5: Experiment 1 model fit results for Operator 5, Grid Texture.
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Experiment 1- Operator 6, Grid
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Figure D.6: Experiment 1 model fit results for Operator 6, Grid Texture.
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Experiment 1: Operator 1, Parallel
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Figure D.7: Experiment 1 model fit results for Operator 1, Parallel Texture.
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Expenment 1- Operator 2, Parallel
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Figure D.8: Experiment 1 model fit results for Operator 2, Parallel Texture.
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Experiment 1: Operator 3, Parallel
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Figure D.9: Experiment 1 model fit results for Operator 3, Parallel Texture.
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Experiment 1: Operator 4, Parallel
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Figure D.10: Experiment 1 model fit results for Operator 4, Parallel Texture.

173



Experiment 1: Operator 5, Parallel
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Figure D.11: Experiment 1 model fit results for Operator 5, Paralle] Texture.
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Figure D.12: Experiment 1 model fit results for Operator 6, Parallel Texture.
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Figure D.13: Experiment 1 model fit results for Operator 1, Perpendicular Texture.
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Experiment 1: Operator 2, Perpendicular
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Figure D.14: Experiment 1 model fit results for Operator 2, Perpendicular Texture.
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Experiment 1: Operator 3, Perpendicular
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Figure D.15: Experiment 1 model fit results for Operator 3, Perpendicular Texture.
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Experiment 1; Operator 4, Pempendicular
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Figure D.16: Experiment 1 model fit results for Operator 4, Perpendicular Texture.
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Experiment 1: Operator 5, Perpendicular
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Figure D.17: Experiment 1 model fit results for Operator 5, Perpendicular Texture.
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Experiment 1: Operator 6, Perpendicular
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Figure D.18: Experiment 1 model fit results for Operator 6, Perpendicular Texture.
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Experiment 1: Operator 1, Line
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Figure D.19: Experiment 1 model fit results for Operator 1, Line Texture.

182



Magnitude - dB

Experiment 1: Operator 2, Line

Y _measured

. Y model,J_ =189

x Ye measured

Y91 one-cue model, J91 =17.8
Y92 two—cue model, Je2 =166

1 1. [l 1 J

Phase - rad

-6

-7+

-0.5 0 0.5 1 1.5
Log 10 frequency - rad/sec

1 1 [ 1 J

-1

Figure D.20

0 0.5 1 1.5
Log 10 frequency - rad/sec

: Experiment 1 model fit results for Operator 2, Line Texture.

183



Experiment 1: Operator 3, Line
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Figure D.21: Experiment 1 model fit results for Operator 3, Line Texture.
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Experiment 1: Operator 4, Line
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Figure D.22: Experiment 1 model fit results for Operator 4, Line Texture.
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Experiment 1: Operator 5, Line
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Figure D.23: Experiment 1 mode] fit results for Operator 5, Line Texture.
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Experiment 1: Operator 6, Line
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Figure D.24: Experiment 1 model fit results for Operator 6, Line Texture.

187



Appendix E

Experiment 2 Appendix

E.1 Vehicle Dynamic Simulation

i -2 0 0] (& 1 1 07(9
gy = |1 0 0[<zy+[0 0 0[{u (E.1)
6 0o 0 0]le 00 .1] g

The position z is in units of eyeheights. The angle 6 is expressed in radians. This
state-space equation was converted to discrete form for real-time simulation with a
sampling interval of 0.01389 seconds, using the first-order hold [75]). The resulting

discrete state-space equations were:

Trt1 09972 0 07 ( &
Tkl = 1001387 1 O Tk
Ort1 0 0 1 0
0.01387 0.01387 0 P
+ 1 0.00009636 0.00009636 0 Uy, (E.2)
0 0 0.01389 Qk

The control input of the operator is 4; the maximum range achievable was from

-10 to 10. The disturbances u and g had the following form as a function of time (#):

12 0,27k 27k,
u(t) = ;D 540 cos( 240t+pi) (E.3)
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z disturbance (u) ¢ disturbance (q)
i | o ki | w; (rad/sec) | ¢ | a; | ki | w; (rad/sec)
1 3 6 .16 1117 vU18
2 3 10 .26 211111 . .28
3 3 15 .39 311} 16 42
4 3 23 .60 4 11| 25 .65
) 3 37 .97 5111 38 f.99
6 3 |59 1.54 61161 | 160
7 1.529 | 101 2.64 71.21103) 1 2.70
8 |.665 | 127 3.32 8 |.21131 3.43
9 | .708 | 149 3.90 9 41.21151| 3.9
10 | .937 | 179 4.69 10| .2} 181 4.74
11 11.63 | 311 8.14 111.21313| . 819
12 | 2.73 | 521 13.64 121 .2 523 ' 13.69

Table E.1: Experiment 2 disturbance spectra magnitudes and frequencies.

12 a.27k o2k
t) = D=2—"= “t+ p; E4
ot) = 3 D=5 cos(Gggt + ) (E4)

The actual values of a, k£ and resulting frequencies (w = 27k/240) are shown in
Table E.1 for the two disturbance spectra. D was set to a value of .125.

The phase offsets (p;) for each repetition and disturbance: (¢ and u) were precom-
puted with a random number generator, randomly distributed from -7 to 7. These
angles used for each repetition are shown in Table E.2 (u) and E.3 (q).

The magnitudes of the disturbance components were modified from the Experi-
ment 1 conditions to remedy a problem which was observed. The u disturbance is
transformed into longitudinal position through approximately a double integrator,
and the ¢ dynamics are transformed into pitch attitude through a single integrator.
In the first experiment, this resulted in less than one pixel peak-to-peak displacement
to any of the visual cues due to the longitudinal disturbance at the two highest fre-
quency points. In this experiment, for the last six frequency points (2.6 rad/sec and
above), the magnitude of the u disturbance was made proportional to frequency (as

opposed to constant, as was done in Experiment 1).
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Repetition
1 2 3 4 5 6 7 8
0.26 {-0.55]-1.36 | -2.17 | -2.99 | 2.49 | 1.67 | 0.86
-1.04 | -268 | 1.96 | 0.32 | -1.33|-297 | 1.67 | 0.02
-2.73 1 -280]-288|-295|-3.03 |-3.10| 3.11 | 3.03
1.18 {-199| 1.12 | -2.05| 1.06 |-2.11 | 1.01 | -2.17
-1.57 [ -2.34|-3.12 | 239 | 1.61 | 0.84 | 0.06 | -0.71
221 ) 161 | 101 042 {-0.18|-0.77 | -1.37 | -1.96
0.83 |-2.94|-042] 2.09 |-1.68] 0.83 | -2.94 | -0.42
-0.31 | -3.10 | 0.40 | -2.38 | 1.11 | -1.67 | 1.82 | -0.96
-261 | 204 | 040 |-1.23 | -2.87| 1.78 | 0.14 | -1.50
10 || -1.22 | -0.64 | -0.07 | 0.50 | 1.07 | 1.64 | 2.21 | 2.78
11 | -2.37 | -1.33 | -0.29 | 0.76 | 1.80 | 2.85 |-2.39 | -1.35
121 0.04 | 294 | -044 | 245 | -093 | 1.97 |-1.42 | 1.48

O} oo 1| o el inf o} po| = .

Table E.2: Experiment 2 phase angles p, used to define disturbance u per repetition.

Repetition
1 2 3 4 5 6 7 8
2.86 | 1.00 | -0.86 |-2.71 | 1.71 | -0.14 | -2.00 | 2.43
211 |-1.25] 168 |-1.68| 1.24 |-2.11| 0.81 | -2.55
0.01 | 1.37 | 2.73 | -2.20 | -0.84 | 0.51 | 1.87 | -3.06
-0.06 | -2.44 | 1.47 (-091 ] 3.00 | 0.62 |-1.76 | 2.15
230 [-0.08|-246 144 [-094| 297 | 0.59 | -1.79
-2.68 | -1.30 ] 0.08 | 1.46 | 2.84 | -2.06 | -0.68 | 0.70
040 [-083]-2.06| 299 | 1.76 | 0.53 | -0.70 | -1.94
096 |-2.95(-058 | 1.78 | -2.13 | 0.24 | 2.60 | -1.31
1.36 | -090| 3.13 | 0.87 | -1.38 | 2.64 | 0.39 | -1.87
0.88 | 1.24 | 1.60 | 1.97 | 2.33 | 2.69 | 3.05 | -2.87
1.33 | 1.96 | 2.59 | -3.06 | -2.42 | -1.79 | -1.15 | -0.52
-2.68 | -1.53 | -0.39 | 0.76 | 1.91 | 3.06 | -2.08 | -0.93

ol =] o] ©| | || | x| wof o] | .

Table E.3: Experiment 2 phase angles p, used to define disturbance g per repetition.

191



E.2 Task Instructions

The written instructions provided to participants are shown below. In addition to
the written instructions, on the first day (training) participants were also given a

demonstration of the task with all of the test conditions.

E.2.1 Training Instructions

Perspective Displays for Position Control

Thank you for agreeing to participate in this study. The objective of the
study is to determine what features of a perspective scene are useful for

position control.

You will be asked to perform a task with a variety of perspective displays.
The task will be to maintain your position fixed despite wind disturbances.
The vehicle you are controlling is not an airplane, or a helicopter, or any
real vehicle. It hovers above the ground at a constant altitude, and you
can make it move forward by moving the stick forward, and backward
by moving the stick backward. The vehicle also pitches up and down
randomly, but you cannot control this motion and the pitching does NOT
affect the fore-aft position. The vehicle does not move side-to-side, nor

does it roll or yaw. The only motions it can do are fore-aft, and pitch.

You will be given an opportunity to train on all of the display conditions.
A total of eight one-minute training runs will be given for each of the
eight conditions (a total of 64 training runs). A score will be assigned to
each run which is a combination of your position error and velocity. A
smaller score is better. After each condition, you will be required to take
a four-minute break. You are also encouraged to take breaks of whatever
duration you wish between runs, in order to alleviate the discomfort which

can occur from sitting in a fixed position for a prolonged period of time.

The results of the training sessions will be analyzed to determine if you

meet the criteria for the follow-on experiments.
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E.2.2 Data Run Instructions

Perspective Displays for Position Control

Phase 11

Thank you for participating in the second phase of this study. The objec-
tive of the study is to determine what features of a perspective scene are

useful for position control.

The task is identical to the one performed in the training conditions,
but will involve longer run times. You are asked to control position as
accurately as possible. As described below, you are required to take breaks
from the task at particular times. You are also encouraged to take breaks

as frequently as necessary to maintain performance on the task.

This portion of the experiment will require two days to complete. On
each day, you will be asked to perform the position control task with
the same eight displays you encountered in the training conditions. For
each condition, you will receive one one-minute training run, then four
four-minute data runs. A score will be assigned to each run which is a
combination of your position error and velocity. A smaller score is better.
For training scores, your performance relative to your previous training
scores will be shown. For data runs, your performance relative to other
subjects data run scores (if available) will be shown. Training runs can be
visually discriminated from data runs by the color of the ground plane.
Training runs feature a brown ground plane; data runs feature a green

ground plane.

After each condition (one training and four data runs), you will be required
to take a four minute break. You will complete four conditions ir the
morning, and four conditions in the afternoon. You will be required to
take a lunch break of at least 30 minutes. The experiment is identical on

both days. The purpose of the repetition is to allow averaging of the data.
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Pso P;, RMS; RMS,

LineTexture | Dots || Mean | SE || Mean | SE || Mean | SE || Mean | SE
Grid (G) absent 442 | 1.09 || 46.31 | 4.29 | 0.667 { .023 }} 0.511 | .049
Grid (G) present || 5.81 | 1.28 || 46.00 | 3.42 || 0.658 | .016 || 0.485 { .028

Para (||) absent || 6.14 | 1.23 || 40.47 | 3.16 || 0.691 | .017 || 0.582 | .066
Para (||) present || 5.73 | 1.00 || 46.68 | 3.75 || 0.653 | .018 || 0.514 | .035
Perp (1) absent || 881 | 1.10 || 38.88 | 2.59 || 0.706 | .020 || 0.564 | .044
Perp (L) | present | 6.94 | 1.47 | 46.30 | 3.65 || 0.656 | .015 )| 0.512 | .035
Line (L) absent || 10.92 | .87 | 36.04 | 2.91 || 0.744 | .018 |} 0.702 | .066
Line (L) present || 7.66 | 1.39 || 42.52 | 3.42 || 0.683 | .021 || 0.562 | .070

Table E.4: Means and Standard Errors for Ps, Ps., RMS;, and RMS, from the 4 x 2
(texture x dots)ANOVA in Experiment 2.

For a given type of display, use a consistent strategy. Once you have
started the data runs (green ground plane), dont experiment with your

strategy (for example, the aggressiveness of control movements).

E.3 ANOVA results summary

In the main body of the report, only figures depicting the means and standard errors
of the dependent measures are presented, with tables summarizing the degree of
statistical significance. The actual values for statistical significance are shown in
Table E.5. The numerical values for means and standard errors for Psg, Ps., RMS;
and RMS, are shown in Table E 4.

194



Factor
Measurement Texture Dots Text /Dots Interaction
F(3,21) p F(1,7) p F(3,21) p
Pso 38.85 | < 0.0005 || 2.14 0.188 6.483 0.003
Ps: 10.832 | < 0.0005 || 42.5 | <0.0005 || 4.169 018
RMS; 11.256 | < 0.0005 || 122.15 | < 0.0005 2.10 0.131
RMS, 5.368 0.007 18.651 | 0.003 2.33 0.103

Table E.5: F-test and probabilities for statistical analysis of the 4 x 2 (texture X
dots) ANOVA in Experiment 2.

Factor
Measurement Splay
FL7) | p
Py 12.972 { 0.009
P, 8.071 | 0.025
RMS; 5.032 | 0.060
RMS, 0.749 | 0.415

Table E.6: F-test and probabilities for statistical analysis of one-way (splay effects)
ANOVA in Experiment 2.
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E.4 Individual Model Parameter Summary

Y, model parameters K,, wy, and fit quality index J,, are presented in Table E.7; the
parameters 7, wy and (ny are shown in Table E.8. The crossover frequency w. and
phase margin ¢, of Y,Y, are in Table E.9. Yp, parameter K,, and fit quality index
Jo1 are in Table E.10. Yp, parameters Kg and K.,, and fit quality index Jy are in
Table E.11. The ratios Kg/ K., and Jp2/Jp1 are in Table E.12.
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Jp

Without Dots With Dots

Obs. G I 4 L G I 4 L
17901 23.1134.8 136.6 || 284 |22.4)14.1 ) 285
5121236186 | 9.4 || 31.9|44.1 | 16.0 | 18.8
11.4111.2119.3 143 | 1231442191170
306 (284 9.3 | 6.5 | 329|350 486 |40.1
14.7118.4139.1 12191124 171 13.5| 21.5
185 (20.5]27.0 (558 | 13.0 | 126 | 39.8 | 22.3
155 (11.8 1345|159 17.0 | 14.9 ; 31.1 | 19.1
10.0 | 176122105 25.0| 86 | 193] 6.3
KP
Without Dots With Dots
Obs. G 1l 1 L G { L L
22012241209 (2231 2211230} 2.28]2.09
2041971771167 | 1881197 1.85]|1.80
1691741170154 | 1.83 1159 | 1.66 | 1.67
2.3512371219|2.16 | 2.39 228 |233] 238
1.78 { 1.82 1 1.74 | 1.57 |f 1.98 | 1.88 | 1.80 | 1.61
2121214 11.88 (213} 2.12|202|2.12]| 206
149155164 |1.45) 164|164 |1.74|1.76
1.74 1169 [ 163|145 1.74 | 1.60 | 1.77 | 1.78

wr, rad/sec
Without Dots With Dots

o T Gl T 1L ]G J[L]CL
1.05{1.03]11.2110951(094|1.14}0.78|1.12
0.68 | 0.69 | 0.52 | 0.47 || 0.69 | 0.69 | 0.66 | 0.65
0.46 { 0.39 ] 0.60 | 0.32 || 0.48 | 0.49 | 0.46 | 0.51
0.72 [ 0.70 | 0.58 | 0.56 || 0.84 | 0.74 | 0.77 | 0.66
0.351025(0311{02710.36|0.26]0.31|0.35
047 | 0.43 | 052 | 0.53 [ 0.59 | 0.50 | 0.38 | 0.45
0.26 1 0.36 | 0.36 [ 0.37 || 0.39 | 0.32 | 0.46 | 0.43
054 [ 0.50 | 0.54 | 0.54 || 0.54 | 0.51 | 0.56 | 0.60

QO ~Jf O U v WO DO =

Q0| ~1] O] Ut =] QI DO =

CO| I | UY=L DO =

Table E.7: Y, parameters K, and wy, and model fit index J, from Experiment 2.
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T, SEC

Without Dots With Dots

Obs. | G I 1 L G I L L
0.211022(0.211]0.22022)0.210.22]0.21
02410241024102410241024]024}0.24
0.251025[0241024025]0.24]024]0.24
0220241022024 0220.22(0.22]0.24
0.28 1 0.28 1 0.28 | 0.28 || 0.28 | 0.28 | 0.28 | 0.28
0.241025(1022102210.22]0.25]0.24]0.25
0.28 10260251025 | 0.25(0.26 | 0.24 | 0.24
0.2510.25]0.26]0.25 )| 0.25]0.25 | 0.24 | 0.24
wy, rad/sec
Without Dots With Dots
Obs. || G I 4 L G I L L
9.7 [100] 93 199 | 92| 98 | 98 | 9.2
6.0 | 5.7 | 54 | 55 | 62| 60| 57|57
55 {53 159|531 58581 55| 56
88 |1 96 | 90 | 98 ||10.2| 9.7 | 9.6 | 10.2
64 | 67162162 76 | 6.7 | 69 | 64
80179163167 75 1107|733 | 87
4.8 | 5.0 | 5.1 4.7 52 | 5.1 5.6 5.8
54 [ 5315351 55| 58| 57 ] 6.1
(N
Without Dots With Dots
Obs. || G I 1 L G I 1 L
0.37 10471047 10.46 }; 0.37 044 ) 043 | 0.46
0.54 | 0.59 | 0.51 } 0.52 {| 0.54 | 0.55 | 0.53 | 0.46
055 (055|054 |064]| 065054 10.57 | 0.56
0.50 1 0.58 | 0.57 | 0.72 || 0.52 { 0.56 | 0.61 | 0.61
0.43 ] 0.46 {047 | 037 | 0.46 { 0.54 | 0.51 | 0.41
0.70 | 0.69 1 0.61 | 0.75 || 0.59 | 0.73 | 0.70 | 0.72
0.47 | 0.47 | 0.46 | 0.51 || 0.46 | 0.48 | 0.44 | 0.47
0.3910.39]044 |0.37 | 042|040 | 0.38 | 0.40

Q0| ~J| O U} ] Q| DN =

CO| ~J| O U W] QO DI =

00| ~I| O} U W] WO DO =

Table E.8: Y, parameters 7, wy, and (y from Experiment 2.
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1

we, rad/sec !

Without Dots With Dots

Obs. | G I 4 L G I L L
26012501241 2471249262248 | 2.39
22312141193 ]1.79| 2061215203 2.01
1.80 | 1.84 [ 1.84 | 1.58 || 1.90 [ 1.70 | 1.76 | 1.79
2541250230221 258 243|248 249
1.90 {191 (184167 |209]194 188 1.71
216 1217119712141 223|208 2.152.09
1591671178 155 (1.78 1 1.76 { 1.91 | 1.90
197189182163 194|1.76 200 | 1.99
P, deg
Without Dots With Dots
Obs. || G I L L G I 1 L
2811253 123.7}12731129.1{243{314}258
21.8120.5(131.3(36.21 26.5|23.3|26.0]|29.5
33.4(33.5(31.8]|41.2( 284380354343
279 26.0(33.3]31.01 26.81'29.1]263]27.6
39.3]41.3|139.6|48.6 | 36.2 | 37.91 39.6 | 43.9
30.8129.9131.81252)30.1)3221)31.1])323
425139.8 1386 (4051 386|383 |37.0]38.2
3321355327396 | 33.139.7] 355|349

QO | O] U x| W O]

QO ~J| OO O x| Lo DD =

Table E.9: Crossover frequency and phase margin of Y,Y, from Experiment 2.
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Jo1
Without Dots With Dots
Obs. G | 4 L G I L L
1 125.8 | 79.9 | 56.7 1259 || 71.0 | 91.2 | 424 | 55.1
2 784 | 556 1479|166 | 499 | 254 | 40.7 | 259
3 226 (4431475 11.7 | 15.2| 104 | 129 | 17.1
4 1129709227216 554 | 475 | 89.9 | 43.6
5 484 | 42.2 1429|348 || 434 | 28.1 15.9 12.7
6 95.9 1 63.0(49.4 (522 304 | 46.9 | 39.7 | 105.0
7 70.4 | 38914701105 | 13.1 | 12.2 | 23.2 39.8
8 97.4 | 55.0|54.3|22.7 | 52.8 | 68.5 | 66.8 | 48.7
K,
Without Dots With Dots
Obs. G I 1L L G I L L
1 6.81 [ 793833887 (6.78| 693 { 785 | 7.24
2 421 1592823681 542 3.83 | 5.15 | 594
3 227 121716971713 2481 224 | 2.34 | 3.10
4 260 {3.0216.04({892( 3.23| 3.51 | 3.87 | 3.79
) 3.11 {481 1652884 | 3691 4.04 | 419 | 546
6 3.56 | 4.671]596]7.99 | 4.06| 4.19 | 4.73 | 4.87
7 298 15341493 {8501 272 3.74 | 3.42 | 6.54
8 9.36 | 85419.601(9.13 | 9.14 | 10.11 | 10.10 | 9.51

Table E.10: Yy, parameter K,, and model fit index Jp; from Experiment 2.
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Jo2
Without Dots With Dots
Obs. G I L L G I 4 L
1 439 | 31.5 | 259 | 22.2 18.7 | 28.6 | 13.1 | 26.8
2 34.3 | 220 | 435 | 153 | 38.0 | 194 | 26.8 | 24.0
3 109 | 24.7 | 203 | 10.2 8.5 4.7 8.3 10.7
4 101.4 | 61.0 | 209 | 19.1 379 | 343 ; 74.7 | 39.0
5 47.0 | 17.7 | 406 | 25.5 || 22.7 | 22.4 | 157 | 11.0
6 777 1 359 | 484 | 46.3 || 23.2 | 16.0 | 283 | 474
7 67.9 | 20.9 | 44.7 7.7 9.0 8.2 19.3 | 10.5
8 20.4 | 33.6 | 40.6 | 20.6 19.3 { 134 | 22.1 | 19.8
Ky
Without Dots With Dots
Obs. G | 4 L G [ L L
1 483 | 6.17 | 7.21 | 839 || 499 | 4.77 | 6.26 | 6.03
2 3.02 | 457 | 769 | 6.45 | 4.82 | 3.41 | 453 | 5.71
3 1.13 | 1.27 | 571 | 6.95 || 2.08 | 1.68 | 2.05 | 2.54
4 215 | 260 | 5.76 | 838 | 2.54 | 3.13 | 3.51 | 3.53
5 2.80 | 3.80 | 6.36 | 836 || 2.97 | 3.68 | 4.15 | 5.20
6 3.00 | 38 | 578 | 7.73 || 3.68 | 3.17 | 4.32 | 3.83
7 280 | 412 | 475 | 822 | 2.28 | 349 | 3.21 | 5.51
8 757 | 7.59 | 8.63 | 8.85 7.75 | 7.66 | 8.14 | 8.33
K’Y
Without Dots With Dots
ol @ 1 1 1 Z 1T L 1 Gl T L]CL
1 8.890 | 949 | 945 | 9.53 || 9.08 | 868 | 9.59 | 879
2 584 | 869 | 9.08 | 7.74 || 6.60 | 4.87 | 7.01 | 6.74
3 4.83 | 5.80 | 966 | 9.07 | 4.21 | 3.88 | 4.17 | 5.05
4 3.73 | 421 | 6.67 | 9.95 || 437 | 468 | 5.05 | 4.52
) 4.62 | 1194 | 896 [14.93 | 7.72 | 7.40 | 4.63 | 7.64
6 599 | 851 | 6.62 | 9.28 505 | 6.73 | 7.08 | 8.07
7 517 | 9.33 | 6.45 | 10.87 || 4.25 | 6.42 | 5.03 | 10.16
8 14.51 { 11.37 | 13.21 | 10.47 || 12.75 | 15.10 | 14.78 | 12.82

Table E.11: Y,, parameters K and K., and model fit index Jg from Experiment 2.
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Jo2/ Jo1

i

Without Dots

With

Dots

Obs.

G

L

L

G

L

0.35

0.39

0.46

0.86

0.26

0.31

0.31

0.49

0.44

0.39

0.91

0.92

0.76

0.76

0.66

0.93

0.48

0.56

0.43

0.87

0.56

0.45

0.64

0.62

0.90

0.86

0.92

0.88

0.68

0.72

0.83

0.89

0.97

0.42

0.95

0.73

0.52

0.80

0.99

0.87

0.81

0.57

0.98

0.89

0.76

0.34

0.71

0.45

0.96

0.54

0.95

0.73

0.68

0.67

0.83

0.29

QO 3| S| G x| WO DO =

0.21

0.61

0.75

0.91

0.37

0.20

0.33

0.41

Kﬁ/K’Y

Without Dots

With

Dots

Obs.

G

I

1

L

G

L

L

0.54

0.65

0.76

0.88

0.55

0.55

0.65

0.69

0.52

0.53

0.85

0.83

0.73

0.70

0.65

0.85

0.23

0.22

0.59

0.77

0.49

0.43

0.49

0.50

0.58

0.62

0.86

0.84

0.58

0.67

0.70

0.78

0.63

0.32

0.71

0.56

0.38

0.50

0.90

0.68

0.52

0.45

0.87

0.83

0.73

0.47

0.61

0.47

0.54

0.44

0.74

0.76

0.54

0.54

0.64

0.54

COp ~J| O U] W] Q| DO =t

0.52

0.67

0.65

0.85

0.61

0.51

0.55

0.65

Table E.12: Model fit index ratio Jg/Jp1, and gain ratio Ksz/K, to
one-cue and two-cue model fits from Experiment 2.
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E.5 Individual Model Fit Plots

The model fits are shown in the following figures (Figures E.1 through E.64).
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Experiment 2: Operator 1, Grid w/o dots
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Figure E.1: Experiment 2 model fit results for Operator 1, Grid Texture w/o dots.
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Experiment 2: Operator 2, Gnd w/o dots
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Figure E.2: Experiment 2 model fit results for Operator 2, Grid Texture w/o dots.
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Experiment 2: Operator 3, Grid w/o dots
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Figure E.3: Experiment 2 model fit results for Operator 3, Grid Texture w/o dots.
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Expenment 2: Operator 4, Grid w/o dots
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Figure E.4: Experiment 2 model fit results for Operator 4, Grid Texture w/o dots.
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Experiment 2: Operator 5, Grid w/o dots
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Figure E.5: Experiment 2 model fit results for Operator 5, Grid Texture w/o dots.
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Experiment 2' Operator 6, Grid w/o dots
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Figure E.6: Experiment 2 model fit results for Operator 6, Grid Texture w/o dots.
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Experiment 2: Operator 7, Grid w/o dots
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Figure E.7: Experiment 2 model fit results for Operator 7, Grid Texture w/o dots.
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Experiment 2: Operator 8, Grid w/o dots
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